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Abstract / Résumé

The exponential growth of computing power has enabled the widespread deployment of machine
learning, which has in turn given rise to new challenges in data processing. The sheer volume of
data now being generated means that the standard statistical assumption of a number of samples far
greater than their dimension is no longer tenable. In the paradigm of the Big Data era, datasets are
typically of very large dimension and may also comprise several modes, indicating a variety of sources,
modalities, domains, and so on. Furthermore, the advancement of technologies required to develop
models capable of processing vast quantities of data results in significant environmental and human
costs. In light of these concerns, it is imperative to promote a more clever and prudent use of our
resources.

Random matrix theory provides powerful tools to precisely study the statistical and computational
limitations associated with the processing of large and multidimensional data. Through this lens, we
examine several learning approaches to identify the relevant parameters influencing the success of a
task and thereby facilitate an informed use.

First of all, we establish a “central limit theorem” on the behavior of the entries of spike eigen-
vectors of a Gram kernel matrix. This is an essential result to predict the performances of spectral
clustering, which has so far been missing from the literature.

Then, we study an extension of spectral clustering to data streams. This approach makes it possi-
ble to cluster a potentially very large dataset with controlled and limited memory usage. In addition
to revealing the exotic spectral behavior of the associated matrix model, our results characterize the
reconstruction performances of an observed noisy signal in a data stream. In addition, we show that
with an astute management of the available memory, it is possible to achieve performances compa-
rable to those obtained without resource constraints. This means a significant reduction in memory
costs compared with standard spectral clustering, with negligible loss of performance.

Finally, we turn our attention to the computational limits to tensor estimation, with a particular
focus on low-rank approximation. Through the study of matrices obtained by unfolding a random
tensor, we describe precisely the reconstruction performances of a noisy tensor signal by means of
a truncated MLSVD (which generalizes the concept of truncated SVD to tensors). In contrast to the
matrix case, this estimate is only quasi-optimal, and we then investigate the computation of the best
low-multilinear-rank tensor approximation with the HOOI algorithm. Using a similar approach, we
examine the multi-view clustering problem from the perspective of a rank-one tensor approximation.
Our results highlight and precisely quantify the pivotal role of view informativeness in the quality of
the estimation. Furthermore, this study sheds light on a central phenomenon in tensor approxima-
tion: the statistical-to-computational gap, that is, the fundamental inability to achieve algorithmically
the performances theoretically attainable by statistical estimation.
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Face au déploiement massif de l’apprentissage machine permis par la puissance exponentielle-
ment grandissante des ressources de calcul, nous devons faire face à de nouveaux défis en matière
de traitement des données. En effet, la dimension de ces dernières atteint des tailles désormais si
grandes que l’hypothèse standard en statistiques affirmant un nombre d’individus bien plus grand
que leur dimension n’est plus acceptable. Dans le paradigme de l’ère du Big Data, les données collec-
tées sont généralement de très grande dimension et peuvent également comporter plusieurs modes,
indiquant une variété de sources, modalités, domaines, etc. De plus, le développement des technolo-
gies nécessaires à la mise en œuvre de modèles capables de traiter des quantités pharamineuses de
données implique un coût environnemental et humain catastrophique face auquel il est nécessaire
de promouvoir un usage plus raisonné et intelligent de nos ressources.

La théorie des matrices aléatoires fournit des outils puissants pour étudier précisément les limites
statistiques et computationnelles associées au traitement de données volumineuses et multidimen-
sionnelles. À travers ce prisme, nous explorons plusieurs approches d’apprentissage afin d’en carac-
tériser les paramètres pertinents pour la réussite d’une tâche et ainsi en permettre un usage informé.

Nous établissons en tout premier lieu un “théorème central limite” sur le comportement des en-
trées des vecteurs propres spikes d’une matrice à noyau de Gram. Il s’agit d’un résultat essentiel pour
prédire les performances du clustering spectral qui manquait, jusqu’à présent, dans la littérature.

Ensuite, nous étudions une extension du clustering spectral aux flux de données. Cette approche
permet de partitionner un jeu de données potentiellement très grand avec un usage mémoire contrôlé
et limité. En plus de dévoiler le comportement spectral exotique du modèle matriciel associé, nos ré-
sultats précisent les performances de reconstruction d’un signal observé à travers un flux de données.
De plus, nous montrons qu’avec une gestion astucieuse de la mémoire disponible, il est possible d’at-
teindre des performances comparables à celles obtenues sans contraintes de ressources. Cela permet
donc une réduction importante du coût en mémoire par rapport à un clustering spectral standard,
pour une perte de performance négligeable.

Enfin, nous nous intéressons aux limites computationnelles de l’estimation tensorielle et, en par-
ticulier, de l’approximation de petit rang. À travers l’étude des matrices obtenues en dépliant un ten-
seur aléatoire, nous décrivons précisément les performances de reconstruction d’un signal tensoriel
bruité au moyen d’une MLSVD tronquée (qui généralise aux tenseurs le concept de SVD tronquée).
Contrairement au cas matriciel, cette estimation n’est que quasi-optimale et nous étudions donc en-
suite le calcul de la meilleure approximation tensorielle de petit rang multilinéaire au moyen de l’al-
gorithme HOOI. Par une approche similaire, nous examinons le problème du clustering multi-vues
sous l’angle d’une approximation tensorielle de rang un. Nos résultats mettent en évidence et quan-
tifient précisément l’importance de l’informativité des vues dans la qualité de l’estimation. De plus,
cette étude permet de mettre en lumière un phénomène central de l’approximation tensorielle : le
fossé statistico-computationel, c’est-à-dire l’incapacité fondamentale d’atteindre algorithmiquement
les performances théoriquement atteignables par estimation statistique.
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Symbols and Notations

Objects

a A scalar.
a, ai A vector and its i -entry.
A, Ai , j A matrix and its (i , j )-entry.
A, Ai1,...,id A tensor and its (i1, . . . , id )-entry.

Norms and Inner Products

∥·∥p Vector p-norm (p ∈ [1,+∞]) or the induced matrix norm (p = 2 by default).
∥·∥ = ∥·∥2 Standard Euclidean norm for vectors, or the corresponding operator norm (spectral

norm) for matrices and tensors.
〈·, ·〉 Euclidean inner product (between vectors).
∥·∥F Frobenius norm of matrices and tensors.
〈·, ·〉F Frobenius inner product (between matrices or tensors).
∥·∥max Matrix max norm.

Sets

[n] = {1, . . . ,n} Positive integers smaller or equal to n.
Sn Symmetric group on [n].
|S | Cardinality of the finite set S .
Z= {. . . ,−2,−1,0,1,2, . . .} Integers.
R Real numbers.
C Complex numbers.
C+ = {z ∈C | ℑz > 0} Complex numbers with positive imaginary part.
Rn n-dimensional real vectors.
Sn−1 = {x ∈Rn | ∥x∥ = 1} Unit sphere in Rn .
Rp×n p ×n real matrices.
Vk (Rn) = {A ∈Rn×k | A⊤A = Ik } Orthonormal k-frames in Rn (Stiefel manifold).
On(R) =Vn(Rn) n ×n orthogonal matrices (orthogonal group).
Rn1×...×nd n1 × . . .×nd real order-d tensors.
[a,b], [a,b[, ]a,b], ]a,b[ Closed, right-open, left-open and open interval from a to b.
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Symbols and Notations

Real and Complex Numbers

[x]+ = max(0, x) Positive part of x ∈R.
i Imaginary unit.
ℜz, ℑz Real and imaginary parts of z ∈C.
z̄ =ℜz − iℑz Complex conjugate of z.

|z| =
√

(ℜz)2 + (ℑz)2 Modulus of z (or absolute value if z ∈R).
Dist(z,S ) = minx∈S |x − z| Distance of z ∈C to the closed subset S ⊂C.

Probability Measures

P(A) Probability of the event A ∈A with respect to the underlying probability space (Ω,A ,P).
δx Dirac measure at x.
Suppµ Support of the probability measure µ.

Random Variables

X ∼L The random variable X follows the law L .

Xi
i.i.d.∼ L The Xi ’s are independent and identically distributed according to L .

E[X ] Expectation of X .
Var(X ) Variance of X .
Cov(X ,Y ) Covariance of X and Y .

Xn
D−−−−−→

n→+∞ L The sequence of random variables (Xn)nÊ0 converges in distribution to
L .

Xn
a.s.−−−−−→

n→+∞ L The sequence of random variables (Xn)nÊ0 converges almost surely to L.

B(p) Bernoulli distribution with parameter p ∈ [0,1].
χ2(d) χ2 distribution with d degrees of freedom.
N (µ,Σ) Multivariate normal distribution with mean µ and covariance Σ.

Φ(x) = 1p
2π

∫ x
−∞ e−

t2
2 dt Gaussian cumulative distribution function evaluated at x ∈R.

Vectors, Matrices and Tensors

δi , j = 1{i= j } Kronecker delta.
0n n-dimensional vector with all its entries equal to 0.
1n n-dimensional vector with all its entries equal to 1.
e(n)

i i -th vector of the canonical basis of Rn .
0n×n n ×n matrix with all its entries equal to 0.
1n×n n ×n matrix with all its entries equal to 1.
In n ×n identity matrix.
A⊤ Transpose of A.
A∗ Conjugate transpose of A.
Ai ,· The i -th row of A as a row vector.
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Symbols and Notations

A·, j The j -th column of A as a column vector.
Span A = {Ax | x ∈Rn} ⊂Rp Span of the p ×n real matrix A.
Rank A Rank of A, i.e., the dimension of Span A.
s1(A) Ê s2(A) Ê . . . Singular values of the matrix A in non-increasing order.
TrB =∑n

i=1 Bi ,i Trace of the n ×n matrix B .
SpB Spectrum of B , i.e., the set of all its eigenvalues.
λ1(S) Êλ2(S) Ê . . . Eigenvalues of the symmetric matrix S in non-increasing order.
uk (S) Unit-norm eigenvector of the symmetric matrix S associated toλk (S).
Diag(v1, . . . , vn) n ×n diagonal matrix with diagonal values v1, . . . , vn .
Vec A Vector of Rnp obtained by stacking the columns of A ∈Rp×n .
A⊙B Hadamard (pointwise) product of A and B.
A ⊠B Kronecker product of the two matrices A,B .
a ⊗b Outer product of the two vectors a,b.
RankT Rank or multilinear rank (depending on the context) of the tensor T.
T(A(1), . . . , A(d)) Contraction of T on A(1), . . . , A(d).
�G;U (1), . . . ,U (d)� Tucker decomposition with core tensor G and factor matrices

U (1), . . . ,U (d).

Asymptotic Notation

un =O (vn) There exist C > 0 and an integer n0 such that |un | ÉC |vn | as soon as n Ê n0.
un(z) =Oz (vn) There exist two polynomials P,Q with nonnegative coefficients and an integer n0

such that |un(z)| É P (|z|)
|ℑz|Q(|ℑz|) |vn | for all z ∈C\R as soon as n Ê n0.

un = o(vn) For all ε> 0, there exists an integer n0 such that |un | É ε|vn | as soon as n Ê n0.
un ≪ vn Alternative notation for un = o(vn).
vn ≫ un Alternative notation for un = o(vn).
un =Θ(vn) There exist c,C > 0 and an integer n0 such that c|vn | É |un | É C |vn | as soon as

n Ê n0.

Given a norm N (·) (usually the spectral norm ∥·∥), we also write

• An =O N (·)(vn) if N (An) =O (vn),

• An(z) =O N (·)
z (vn) if N (An(z)) =Oz (vn),

• An = oN (·)(vn) if N (An) = o(vn).
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Chapter 1

Introduction

1.1 Learning from Large Multidimensional Data: A New Paradigm

STATISTICS are defined in the Cambridge English Dictionary as “the science of using information
discovered from studying numbers”. The word itself comes from the German Statistik introduced

in 1749 by Gottfried Achenwall in its Abriß der neuen Staatswissenschaft der vornehmen Europäischen
Reiche und Republiken. He described in this work the conditions of the leading European countries
with numbers: their agriculture, manufactures and commerce. Initially, “statistics” only referred to
numerical information about states, such as demographics in particular, and later encompassed any
collected numerical information as well as its analysis and interpretation. It was not until the advent
of the computer in the mid-20th century that larger amounts of data could be efficiently processed
and information extracted from them.

Standard statistical models usually assume a number n of individuals for each of which p numer-
ical values are given. As an example, n individuals of a population could be represented, for medical
purposes, by p-dimensional feature vectors xi whose entries are their age, weight, height, blood pres-
sures, etc. Thus, it is often the case that the number of individuals is much larger (several orders of
magnitude) than the number of features by which they are represented. A natural assumption when
studying these statistical models is therefore that n →+∞ while p remains fixed. In fact, most stan-
dard results in statistics (van der Vaart, 1998) are given in this setting, which has indeed long been
judicious.

Let us look at the following elementary example as an illustration of such results. Consider n in-
dependent and identically distributed random vectors x1, . . . , xn ∈ Rp with zero mean, E[xi ] = 0p , and
a positive-definite covariance matrix C = E[xi x⊤

i ]. The sample covariance matrix is defined as

Ĉ = 1

n

n∑
i=1

xi x⊤
i .

It is a convergent estimator of the covariance C . Indeed, by the strong law of large numbers, we have
the almost sure convergence

max
1É j ,kÉp

∣∣Ĉ j ,k −C j ,k
∣∣ a.s.−−−−−→

n→+∞ 0 (1.1)

and the convergence in spectral norm ∥Ĉ −C∥→ 0 almost surely as n →+∞. This shows that Ĉ is an
accurate estimator of the covariance in the regime where n ≫ p.

However, since the beginning of the digital age at the start of the 21st century, the amount of avail-
able data and their size has rapidly risen. Notably, in biology, the emergence of DNA microarrays in

13



Chapter 1. Introduction

0 2 4
0

0.5

1

p/n = 0.1

0 2 4
0

0.5

1

1.5

p/n = 1

0 2 4
0

1

2

3

p/n = 1.5

Figure 1.1: Empirical distribution of eigenvalues of the sample covariance matrix Ĉ = 1
n

∑n
i=1 xi x⊤

i with

xi
i.i.d.∼ N (0p , Ip ), n = 1000 and, from left to right, p/n = 0.1,1,1.5.

the late 1990s and the publication of the human genome in 2001 launched a debate on how to man-
age and analyze this “data deluge” (Gershon, 2002). The “big data era” in which we live today provides
tremendous amounts of information in many different forms. Combined with the power of modern
computers, these resources allow solid statistical inference and a rapid flowering of machine learning
methods such as deep neural networks, which thrive since the “AlexNet surprise” (Krizhevsky et al.,
2012). This new paradigm, where data is no longer scarce but superabundant, invites us to process
data with large and multiple dimensions.

1.1.1 The Large-Dimensional Regime

The old standard assumption n ≫ p is no longer verified and new statistical models — requiring new
tools — must be considered. In the covariance estimation example presented above, if both n and
p are large, that is, if p,n → +∞ with the ratio p/n neither vanishing nor diverging, it is no longer
true that ∥Ĉ −C∥ → 0, even if the convergence (1.1) still holds! Indeed, this is easily seen in the case
where p > n since this implies that Ĉ must have at least p −n zero eigenvalues, therefore ∥Ĉ −C∥ ̸→ 0.
Because Ĉ is a p ×p matrix, the fact that p →+∞ with n hinders the transition from the convergence
of the entries (1.1) to the “global” convergence of the matrix (in spectral norm).

This phenomenon is illustrated in Figure 1.1. Empirical distributions of eigenvalues of Ĉ are rep-
resented for n = 1000 and various p/n ratios when C = Ip . The larger p is (relatively to n), the more
spread out are the eigenvalues. If p < n, there are no zero eigenvalues, but they still occupy a rather
large interval. Clearly, it is hard to infer from these empirical distributions that the underlying covari-
ance has all its eigenvalues equal to 1.

Thus we see that the ratio p/n is a central parameter in statistical models dealing with large-
dimensional data. As a rule of thumb, standard statistical results where n →+∞ but p is fixed may no
longer hold as soon as p/n ≳ 0.01 (Couillet and Liao, 2022, Remark 1.2). Consider, e.g., VGG features
(Simonyan and Zisserman, 2015) of n images. Each image is represented by a vector of dimension
p = 4096. Therefore, n must be at least 409600 to avoid potential large-dimensional fallacies. Then,
if one is given a kernel function k : Rp ×Rp → R and wishes to compute a Gram kernel matrix K with
entries Ki , j = k(xi , x j ) (e.g., for clustering purposes), there are, due to symmetry, 1

2 n(n +1) entries to
store. Considering each floating-point entry stored with half precision on 16 bits, the storage of the
kernel matrix would require 168 gigabytes! This is much more than the available amount of random-
access memory on most current computers. The assumption n ≫ p is hence conspicuously not rea-
sonable in a realistic modeling of this setting. In Chapter 4, we propose a efficient way to deal with
such very large kernel matrices with a limited amount of memory resources.
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1.1. Learning from Large Multidimensional Data: A New Paradigm

1.1.2 The Multidimensional Regime

Besides being of increasingly larger dimension, data could also come with several modes representing
various sources, modalities, domains, and so on. Consequently, the representation of an individual
xi as a p-dimensional vector may not properly represent the available information. As an illustration,
consider the problem of localizing the origin of an epileptic seizure through an analysis of electroen-
cephalogram (EEG), as it was done by Acar et al. (2007). The collected data correspond to wavelet
coefficients at each time step, each scale (frequency) and each electrode. Therefore the simplest way
to represent the dataset while still preserving the structure of the problem is with a 3-dimensional
array whose (t , s,e)-entry is the coefficient at time t , scale s and electrode e.

d-dimensional arrays are commonly represented with tensors, which are objects describing mul-
tilinear relationships between vectors, matrices and even tensors themselves (in fact, vectors and ma-
trices can be seen as particular cases of tensors). In particular, just as a matrix (order-2 tensor) M
describes a bilinear form (x , y) 7→ x⊤M y , an order-d tensor T describes a d-linear form (x1, . . . , xd ) 7→
T(x1, . . . , xd ). They appear in multiple areas such as brain imaging (Zhou et al., 2013), neurophysi-
ological measurements (Rabinowitz et al., 2015; Seely et al., 2016), community detection (Anandku-
mar et al., 2013), hyperspectral imaging (Li and Li, 2010; Zhang et al., 2013; Kanatsoulis et al., 2018),
spatio-temporal gene expression (Liu et al., 2022), recommender systems (Karatzoglou et al., 2010;
Rendle and Schmidt-Thieme, 2010; Frolov and Oseledets, 2017) and topic modeling (Anandkumar
et al., 2014). Hence, modern data analysis is not only large-dimensional but also multidimensional.

A major concern of machine learning and signal processing is to discover and exploit underlying
low-dimensional structures in data. It is therefore a natural sparsity assumption to model the sought
information as being represented by a few algebraic terms in a certain tensor decomposition (Kad-
mon and Ganguli, 2018; Anandkumar et al., 2014). In their fMRI study, Hunyadi et al. (2017) perform a
blind source separation via a joint tensor decomposition on a channel × time × patient array, whereas
Williams et al. (2018) use a low-rank tensor approximation on a neuron × time × trial array as a di-
mensionality reduction technique to study neural dynamics.

The reconstruction of such low-dimensional information is however more challenging with ten-
sors than matrices as some notions and properties pertaining to the latter do not easily generalize to
the former. A most striking fact is the non-closure of the set of rank-R order-d tensors1 as soon as
R Ê 2 and d Ê 3. In the order-2 case, it is well-known that if the sequence of rank-R matrices (An)nÊ0

converges to A∞, then the rank of A∞ is at most R. In other words, the set {A ∈ Rp×n | Rank A É R} is
closed. For higher-order tensors (d Ê 3), this property is lost as soon as R Ê 2. As an example, de Silva
and Lim (2008) give the following sequence of order-3 tensors,

An = n

(
x1 +

1

n
y1

)
⊗

(
x2 +

1

n
y2

)
⊗

(
x3 +

1

n
y3

)
−nx1 ⊗x2 ⊗x3

where x1, y1 ∈Rn1 , x2, y2 ∈Rn2 and x3, y3 ∈Rn3 . Although each An has rank 2 (except for some partic-
ular choices of x1, y1, x2, y2, x3, y3 not considered here), the limit A∞ = x1⊗x2⊗ y3+x1⊗ y2⊗x3+ y1⊗
x2⊗x3 has rank 3! Comon et al. (2009) give another insightful example of a sequence of rank-3 tensors
with a rank-5 limit. In fact, a sequence of fixed-rank tensors can converge to a tensor of arbitrarily
higher tensor rank (de Silva and Lim, 2008).

Within the framework of the reconstruction of a low-dimensional information from large data,
the low-rank approximation is a commonly-used technique. It is a well-posed problem when work-
ing with matrices, but the previous example expressly shows that it is ill-posed for tensors of general
order. Indeed, A∞ is an example of tensor having no best rank-2 approximation. More broadly, the
generalization of a matrix-related problem to a tensor-related one raises many difficulties. The prima

1The rank of a tensor is defined as the minimal number of rank-one terms in which it can be exactly decomposed.
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facie disheartening observation made by Hillar and Lim (2013) that most tensor problems are NP-hard
presents in fact a variety of exciting, new, and sometimes unexpected challenges.

1.1.3 Inference Problems and Phase Transitions

The reconstruction of a low-dimensional information from large data mentioned previously falls into
the realm of a particular class of statistical inference problems, which we define as follows: given an
observation X modeled as a noisy measurement of a sought information, i.e., X = S + N where S is
a signal and N an additive noise, the inference problem consists in reconstructing S from the obser-
vation of X , that is, finding a transformation f such that Ŝ = f (X ) maximizes a certain measure of
affinity with S. Although we will be mostly interested in the case where X , S and N are matrices or
tensors, they could be any object as long as our operations make sense. The model usually comes
with a sparsity assumption on S, i.e., it is expected to break down in a few simple terms. Harnessing
this decomposition is key to finding a good transformation f .

The reconstruction performance of Ŝ = f (X ) depends on the signal-to-noise ratio ρ which is gen-

erally defined as the ratio between the powers of the signal and the noise, ρ = Psignal

Pnoise
, where the power

may have different definitions depending on the type of objects and the problem considered (for ma-
trices, it is commonly defined as the squared norm). In any case, the signal-to-noise ratio measures
the distinguishability of the signal from the noise. It is therefore natural to ask the following questions.

• What is the minimum signal-to-noise ratio value at which the information in X is theoretically
sufficient for the recovery of S?

• What is the minimum signal-to-noise ratio value at which S can be efficiently reconstructed
from X ?

• At a given signal-to-noise ratio, what is the best reconstruction performance achievable with
Ŝ = f (X )?

At first glance, it may seem that the first two questions should have the same answer. That is, if it is
statistically possible to estimate S from X as soon as ρ > ρstat, then it should also be possible to design
an algorithm which is able to do so as soon as ρ > ρstat. However, new inference problems of the big
data era face a computational barrier: there are various problems for which it is fundamentally im-
possible for an algorithm to recover efficiently (i.e., in polynomial time) the information of interest if
ρ < ρcomp. This exhibits two fundamental thresholds: a statistical threshold ρstat and a computational
threshold ρcomp Ê ρstat. In some problems, they are equal, meaning that there exists an algorithm
able to (partially) reconstruct S from X in polynomial time as soon as this is statistically possible. Yet,
there exists a myriad of problems displaying a “hard phase” where the inference is statistically possi-
ble but cannot be performed in polynomial time, this is referred to as a computational-to-statistical
gap (Bandeira et al., 2018; Zdeborová and Krzakala, 2016; Gamarnik et al., 2022).

ρ

ρstat ρcomp

Statistically impossible
Statistically possible

but computationally hard Computationally easy

The two thresholds ρstat and ρcomp indicate the positions of abrupt changes in the complexity of the
problem. The latter are usually called phase transitions — a term borrowed from statistical physics,
which have many deep connections with statistical inference.

The third question is concerned with the quality of the reconstruction Ŝ achieved with a certain
algorithm f . Its performance is expected to be an increasing function of the signal-to-noise ratio but
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its precise characterization would be an asset in understanding the inner workings of algorithms and
comparing them to potential information-theoretic optimal curves. Although values of practical in-
terest are only for ρ Ê ρcomp since the estimation of S is not feasible below the computational thresh-
old, this function should also have definite values in the hard phase ρstat < ρ < ρcomp, representing
the theoretically-achievable reconstruction performance. In “practice”, the latter can be attained by
initializing the algorithm near the sought solution.

Let us use an example to illustrate what has just been said. Consider the observation of an order-3
n ×n ×n symmetric tensor T which is known to be the noisy observation of a rank-one signal,

T =βx ⊗x ⊗x + 1p
n
N, (1.2)

where β> 0, x ∈Sn−1 and N is a random symmetric tensor from the Gaussian orthogonal ensemble,
i.e., it has a density g given by

g (N) = 1

Zn
e−

1
2 ∥N∥2

F

with Zn such that
∫

g (N)dN = 1 (integration is over the set of symmetric tensors). More specifically,
for all i , j ,k ∈ {1, . . . ,n} such that i < j < k,

Ni ,i ,i
i.i.d.∼ N (0,1), Ni ,i , j

i.i.d.∼ N

(
0,

1

3

)
, Ni , j ,k

i.i.d.∼ N

(
0,

1

6

)
,

and Nσ(u,v,w) =Nu,v,w for all permutation σ ∈S3 and u, v, w ∈ {1, . . . ,n}.
The inference problem consists in reconstructing the planted signal (β, x) from the observation T.

Therefore, we consider the maximization of the likelihood associated with Model (1.2), which reduces
to the best rank-one approximation problem

(β̂, x̂) ∈ argmin
γ>0, y∈Sn−1

∥∥T−γy⊗3∥∥2
F. (1.3)

Here, the power of the signal and the noise should be understood as the squared operator norms2

∥βx⊗3∥2 = β2 and ∥ 1p
n
N∥2. Since the latter is expected to concentrate as n → +∞ (Tomioka and

Suzuki, 2014), the signal-to-noise ratio is proportional to β2. Hence, we ask the following questions:

• statistical threshold — what is the minimal value of β at which Problem (1.3) has a solution
positively correlated with (β, x)?

• computational threshold — what is the minimal value of β at which this solution can be com-
puted in polynomial time?

• how good is the reconstruction β̂x̂⊗3? i.e., how close is β̂ to β and how correlated is x̂ to x?

These questions find answers in several works, among which we notably refer to Jagannath et al.
(2020); Ben Arous et al. (2020); Goulart et al. (2022), respectively for each question. Summarizing
their results very shortly, Problem (1.3) presents a statistical-to-computational gap, i.e., there exists
a hard phase [βstat,βcomp] where it is statistically possible to reconstruct (β, x) from T but no known
algorithm is able to do so in polynomial time. Contrary to βstat, the position of the computational
threshold diverges with n. As of now, the best algorithms compute (β̂, x̂) above a threshold behaving
like C n1/4 as n →+∞, and it is conjectured that no algorithm can do better.

Relying on powerful random matrix tools, Goulart et al. (2022) precisely characterize the value
of β̂ and the alignment 〈x , x̂〉2 in the limit where n → +∞. Their results are depicted in Figure 1.2

2The spectral norm of an order-3 tensor X is ∥X∥ = supu,v ,w ̸=0
|X(u,v ,w )|
∥u∥∥v∥∥w∥ . This naturally extends to any order d Ê 2.
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Figure 1.2: Reconstruction performance of the maximum likelihood estimation (1.3) as a function of
β (controlling the signal-to-noise ratio). Red curves are the values predicted by Goulart et al. (2022)
in the large-dimensional regime n →+∞. They are compared with simulation results at n = 100 of a
tensor power iteration initialized at random uniformly on the sphere (blue squares) or at the planted
signal (orange circles).

(red curves) and compared to simulation results when n = 100 obtained with a tensor power itera-
tion (De Lathauwer et al., 2000a), estimating a solution to Problem (1.3), initialized at random with a
uniform distribution on the sphere Sn−1 (blue squares) or at the planted vector x (orange circles).

Ifβ is too small, it is theoretically impossible to recover any signal: β̂= E[∥ 1p
n
N∥] = 4p

6
(the plateau

on the left part of Figure 1.2) and 〈x , x̂〉2 = 0, the observed tensor T is statistically indistinguishable
from the noise 1p

n
N. This suddenly changes as soon as β crosses the value 2p

3
: β̂ becomes greater

than E[∥ 1p
n
N∥] and x̂ is positively correlated with x . In particular, the value of 〈x , x̂〉2 presents a dis-

continuity at β = 2p
3

, it abruptly jumps from 0 to 1
2 . Yet, just above this critical value of β, the power

iteration is not able to reconstruct the planted signal and converges to an uninformative optimum,
unless it is initialized very near the sought solution (which, obviously, is not possible in practice). This
is the hard phase: although an informative solution exists, its computation is too hard and we are
bound to fall into an uninformative one. As β increases, the power iteration eventually converges to
the informative optimum — it is the easy phase.

Remark 1.1 (Phase transitions). Strictly speaking, phase transitions do not exist at finite system size
(here, n). Indeed, they are characterized by abrupt changes (in statistical physics, they correspond to
non-analyticities in the free energy density) which can only appear when the limit n →+∞ is taken.
Thus, we do not observe a sharp transition from the hard phase to the easy phase in the finite-n sim-
ulations of Figure 1.2.

Remark 1.2 (Statistical threshold). In fact, Jagannath et al. (2020) reveal that the behavior of the maxi-
mum likelihood estimator (β̂, x̂) near the statistical threshold is trickier than what is presented above.
There are two close but distinct values βs = 2p

3
≈ 1.1547 and βc ≈ 1.2066 such that, for values of β

lying between them, the informative optimum of Problem (1.3) is not the global one. In other words,
if β<βs , there is no informative optimum, if β>βc , the informative optimum is the global one, but if
βs < β< βc , there exists an informative local optimum, although the global optimum (the maximum
likelihood estimator) is not informative. Strictly speaking, the statistical threshold corresponds to βc

(be careful that the subscripts s and c do not refer to “statistical” and “computational”) and βs is a
“sub-statistical” threshold. The results of Goulart et al. (2022) specify the reconstruction performance
of this informative optimum as soon as βÊβs but they do not give any insight into the value of βc .
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1.2 Deciphering Large-Multidimensional Statistics with Random
Matrix Theory

A central tool to understand the behavior of large and multidimensional arrays of data, such as those
mentioned above, is the theory of large random matrices. The study of these objects and, in partic-
ular, their eigenvalues and eigenvectors emerged in the early days of statistical sciences with Wishart
(1928) who was interested in empirical covariances. Then, it resurfaced thirty years later when the
physicist Wigner (1955, 1958) used them as statistical models for heavy nuclei atoms — for which
he was awarded the Nobel prize in physics in 1963. Since then, the field has known a wide expan-
sion in various scientific domains such as statistics (El Karoui, 2010), finance (Potters and Bouchaud,
2020, Chapter 20), quantum mechanics (Guhr et al., 1998), free probability (Voiculescu, 1991). It is
even linked with the Riemann hypothesis as the zeros of the zeta function on the critical line 1

2 + it
are believed to share the same distribution as that of the eigenvalues of a GOE matrix inside the bulk
(Montgomery, 1973; Keating, 2002).

In a nutshell, random matrix theory is concerned with the behavior of eigenvalues and eigenvec-
tors of matrices with random entries at macroscopic and microscopic scales. While the former involves
questions regarding the limiting eigenvalue distribution, linear statistics of eigenvalues or eigenvec-
tors, outlying eigenvalues, etc., the latter deals with the limiting distribution of a specific eigenvalue,
the point process governing the position of its neighbors and its link with the corresponding eigen-
vectors, etc. The present work is only concerned with the study of the proposed models at the macro-
scopic scale, that is, the global regime (as opposed to the local regime).

1.2.1 Limiting Spectral Distribution of Random Matrices

The spectrum of the empirical covariance matrix (Figure 1.1) was characterized by Marčenko and
Pastur (1967). In order to study the asymptotic behavior of the empirical spectral distribution µp =
1
p

∑p
i=1δλi (Ĉ ) they exploited a powerful tool, namely its Stieltjes transform,

mp : z ∈C\R 7→
∫
R

dµp (λ)

λ− z
.

Given the particular expression of µp , the expression of its Stieltjes transform simplifies into mp (z) =
1
p

∑p
i=1(λi (Ĉ )− z)−1. As p,n →+∞ with p/n

def= c ∈]0,+∞[, Marčenko and Pastur (1967) showed the
almost sure pointwise convergence of mp to a Stieltjes transform mMP such that

zcm2
MP(z)− (1− c − z)mMP(z)+1 = 0 for all z ∈C\R, (1.4)

which implies the almost sure weak convergence ofµp toµMP given by the inverse Stieltjes transform of
mMP. This limiting measure is nowadays known as the Marčenko-Pastur distribution with parameter
c and is expressed as

µMP =
[

1− 1

c

]+
δ0 +ν with dν(λ) =

√
[λ−E−]+[E+−λ]+

2πcλ
dλ (1.5)

where E± = (1±p
c)2.

The density of the Marčenko-Pastur distribution is plotted in Figure 1.3 with the same empirical
spectral distributions (histograms) as in Figure 1.1. Notice that the particular case p/n = 1 presents a
hard edge as λ ↓ 0 which is due to a singularity in the limiting density,√

[λ]+[4−λ]+

2πλ
= 1

π
p
λ
+ o
λ↓0

(1).
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Figure 1.3: Empirical spectral distribution (ESD) and limiting spectral distribution (LSD) of the sam-

ple covariance matrix Ĉ = 1
n

∑n
i=1 xi x⊤

i with xi
i.i.d.∼ N (0p , Ip ), n = 1000 and, from left to right, p/n =

0.1,1,1.5.

This hard edge scenario marks a transition from the absence (c < 1) to the presence (c > 1) of an atom
around 0 in the Marčenko-Pastur distribution.

In fact, the “Stieltjes transform approach” is a very versatile method to determine the limiting spec-
tral distribution of a random matrix model and its was extensively used by Silverstein and Bai (1995);
Bai and Silverstein (1998, 2010). It usually results in a fixed-point equation of the form m(z) = f (m(z))
which allows to numerically compute m and to reconstruct the corresponding probability distribu-
tion µ. In the case of the sample covariance matrix considered by Marčenko and Pastur (1967), f is
simple (see Equation (1.4)) and analytic expressions of mMP as well as µMP can be found.

1.2.2 Outlying Eigenvalues and Eigenvectors in Spiked Models

In a statistical data analysis context, we are not interested in “mere random matrices” (although they
are interesting mathematical objects) but rather in related spiked models. This terminology refers to
low-rank perturbations of (usually standard) random matrix models.

For example, Baik and Silverstein (2006), following a model initially proposed by Johnstone (2001),
were interested in the eigenvalue distribution of the sample covariance matrix Ĉ when the underlying
true covariance is C = Ip +P where P has a small rank compared to p,n (usually, it is kept fixed while

p,n →+∞). Thus, Ĉ = 1
n (Ip +P )

1
2 X X ⊤(Ip +P )

1
2 ⊤ where X is a p ×n matrix with i.i.d. entries having

zero mean, unit variance and finite fourth moment3. It is a low-rank perturbation of the original ran-
dom matrix model 1

n X X ⊤ whose empirical spectral distribution is known to converge weakly almost

surely to the Marčenko-Pastur distribution. The limiting spectral distribution of Ĉ is the same but,
depending on the “strength” (the eigenvalues) of the perturbation P , a finite number of eigenvalues
of Ĉ may be isolated on the right-side of the bulk described by ν in Equation (1.5). Paul (2007) further
precised that the corresponding eigenvectors are correlated with those of P in a manner which also
depends on the strength of the perturbation.

Later, Benaych-Georges and Nadakuditi (2012) studied a different spiked model, which is of par-
ticular interest to us, namely X = P + N where P is a low-rank matrix modeling a signal and N is a
random matrix modeling a noise. With a free probability approach, they characterize the asymptotic
behavior of the largest and smallest singular values as well as that of their corresponding singular
vectors. This is equivalent to considering the eigenvalues and eigenvectors of the sample covariance
matrix Ĉ = 1

n X X ⊤ or the Gram kernel matrix K = 1
p X ⊤X . Given that the noise has, e.g., i.i.d. Gaussian

N (0,1) entries, both Ĉ and K have their empirical spectral distributions converging weakly almost
surely to a Marčenko-Pastur distribution (with parameters c and c−1 respectively). Moreover, depend-

3This last assumption is needed for technical reasons, see Theorem 2.31.
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ing on the strength (the singular values) of the perturbation P , there may be a few isolated eigenvalues
with corresponding eigenvectors correlated with the singular vectors of P .

In both cases just discussed, the spiked model has the same limiting spectral distribution as the
original unperturbed model. The only influence that has the addition of a low-rank perturbation P is
that it may cause the emergence of a few isolated eigenvalues whose positions (and presence) depend
on the strength of the perturbation. Moreover, some information regarding the singular subspaces
of P are also contained in the corresponding eigenvectors. In a statistical inference setting, spiked
models are particularly relevant objects of study to understand the main limiting factors in the re-
construction of the signal P from the observation X and it can thus provide answers to the questions
raised in Section 1.1.3. Here, it is the singular values of P which control the signal-to-noise ratio.

Remark 1.3 (No prior information on P ). Some studies on spiked models, such as, e.g., Lelarge and
Miolane (2017), consider that the perturbation P is also random and follows a certain prior distribu-
tion. We shall not be concerned with such considerations: in our settings, no prior information is
given on P besides its structure. Concretely, if P is a rank-one symmetric matrix of the form βx x⊤

with ∥x∥ = 1, then we assume no further knowledge on the direction x (which is equivalent to saying
that it follows a uniform prior on Sn−1) and the scale β becomes a parameter of the problem.

As an illustration of the interest of spiked models for statistical learning, consider the task of sep-
arating n individuals represented by p-dimensional feature vectors x1, . . . , xn ∈ Rp into two clusters.
This is a very general problem as the xi ’s could represent, e.g., images of cats and dogs, healthy and
sick patients or sentences about sports and politics. Assuming, for simplicity, that each cluster has
mean ±µ ∈ Rp (which states that the origin 0p is in the middle of both clusters), the feature vectors
can be expressed as

xi = jiµ+ni

where ji =±1 depending on the cluster which xi belongs to and ni ∈ Rp represents the dispersion of
xi around jiµ. The ni ’s are modeled as i.i.d. N (0p , Ip ) random vectors (this choice is discussed in
detail in Section 2.2.3). Hence, the data matrix X = [

x1 . . . xn
] ∈Rp×n decomposes into

X =µ j⊤+N (1.6)

where j = [
j1 . . . jn

]⊤
and N is a random matrix with i.i.d. N (0,1) entries. This is precisely a signal-

plus-noise model. Since we want to perform clustering of the xi ’s, our goal is to reconstruct j from X .
Thus, we consider the Gram kernel matrix K = 1

p X ⊤X .
A realization of the spectrum of K is depicted in the left panel of Figure 1.4 when the first half of

the xi ’s is assigned to the “−1 cluster” while the other half is assigned to the “+1 cluster” and ∥µ∥2 = 4
(note that ∥µ∥2 controls the signal-to-noise ratio ∥µ j⊤∥2/E[∥N∥2]). Because the addition of a low-rank
perturbation does not change the limiting spectral distribution, it is not surprising to see 1

n

∑n
i=1δλi (K )

approaching the Marčenko-Pastur distribution (here, with parameter 1
2 ). The only display of the rank-

one perturbationµ j⊤ is in the fact that the dominant eigenvalue λ1(K ) has left the bulk. Yet, the latter
has a negligible weight in the empirical spectral distribution as p,n →+∞. Thus, we must introduce
a new tool, borrowed to the theory of linear operator in Hilbert space (Akhiezer and Glazman, 1993):
the resolvent matrix. Specifically, the resolvent of K is defined for all z ∈C\ SpK as

QK (z) = (K − zIn)−1.

The isolated eigenvalue is characterized by the fact that it is the only point in C \ [E−,E+] for which

QK (z) is undefined as p,n →+∞ with p/n
def= c ∈]0,+∞[. Hence, a careful asymptotic analysis of the

singular points of the resolvent shows that

λ1(K )
a.s.−−−−−−→

p,n→+∞ ξ
def=


(
1+

p
c−1

)2
if ∥µ∥2 Ép

c
(∥µ∥2+1)(∥µ∥2+c)

c∥µ∥2 if ∥µ∥2 >p
c

. (1.7)
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Figure 1.4: Left: Empirical spectral distribution (ESD) and limiting spectral distribution (LSD) of
K = 1

p X ⊤X with X following Equation (1.6). The green dashed line indicates the almost sure asymp-
totic position of an isolated eigenvalue ξ defined in Equation (1.7). Right: Coordinates of the domi-
nant eigenvector of K compared with the population vector

√
ζ/n j with ζ defined in Equation (1.8).

Experimental setting: p = 1000, n = 500, ∥µ∥2 = 4, equal class sizes.

The asymptotic position ξ depends only on ∥µ∥2 (the strength of the perturbation) and the parameter
c. If ∥µ∥2 Ép

c (the signal-to-noise ratio is too small), then ξ is simply the right edge of the bulk E+.
On the other hand, as soon as ∥µ∥2 > p

c (the signal-to-noise ratio is large enough), the dominant
eigenvalue escapes the bulk, ξ> E+. Its position is represented by the green dashed line.

The coordinates of the eigenvector u1(K ) associated to λ1(K ) are plotted in the right panel of Fig-
ure 1.4. We can see that they are correlated with the sought vector j (recall that ji =−1 if i É n/2 and
ji = +1 otherwise). Indeed, this eigenvector carries some information about the perturbation µ j⊤.

More precisely, it is aligned with the single eigenvector of 1
n [µ j⊤]⊤[µ j⊤] = ∥µ∥2

n j j⊤, namely 1p
n

j .

The resolvent formalism is also useful here, in that it allows to compute these alignments: denoting
Λ= Diag(λ1(K ), . . . ,λn(K )) ∈Rn×n and U = [

u1(K ) . . . un(K )
] ∈On(R), we have,

QK (z) = (
UΛU⊤− zIp

)−1 =U
(
Λ− zIp

)−1U⊤ =
n∑

i=1

ui (K )ui (K )⊤

λi (K )− z
,

and, choosing a positively-oriented simple closed complex contour γ circling around λ1(K ) and leav-
ing all the other eigenvalues outside, Cauchy’s integral formula (Proposition 2.15) yields,

〈a,u1(K )〉2 =− 1

2iπ

∮
γ

a⊤QK (z)a dz

for all deterministic vector a ∈ Rn . Again, a careful asymptotic analysis of the previous integral when
a = 1p

n
j shows that

1

n

〈
j ,u1(K )

〉2 a.s.−−−−−−→
p,n→+∞ ζ

def=
{

0 if ∥µ∥2 Ép
c

1− ∥µ∥2+c
∥µ∥2(∥µ∥2+1) if ∥µ∥2 >p

c
. (1.8)

As for ξ, the quantity ζ only depends on ∥µ∥2 and c. Moreover, the alignment of u1(K ) with j is non-
zero as soon as λ1(K ) leaves the bulk (∥µ∥2 >p

c). Notice that ζ is an increasing function of ∥µ∥2 on
[
p

c,+∞[ starting at 0 (no alignment) and approaching 1 (perfect alignment) as ∥µ∥2 →+∞.
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1.2. Deciphering Large-Multidimensional Statistics with Random Matrix Theory

Thus, the resolvent matrix allows the study of spiked models by describing the asymptotic position
of isolated eigenvalues and the alignment of the corresponding eigenvectors with the sought informa-
tion (the eigenspace of the perturbation). We should also mention the following elementary property
of the resolvent,

1

n
TrQK (z) = 1

n

n∑
i=1

1

λi (K )− z
=

∫
R

1

λ− z
d

[
1

n

n∑
i=1

δλi (K )

]
(λ).

In words, the normalized trace of the resolvent is the Stieltjes transform of the empirical spectral distri-
bution. Hence, the resolvent is the central tool we shall be concerned with in order to study both the
limiting spectral distribution (via the Stieltjes transform) as well as the spike eigenvalues and eigen-
vectors of our models.

In light of the questions raised in Section 1.1.3, the previous analysis of the spiked model X =µ j⊤+
N gave insightful results regarding the original clustering problem. Firstly, it exhibited a threshold
value ∥µ∥2 =p

c marking a transition between two distinct phases of the inference problem. If ∥µ∥2 Ép
c, the statistical information contained in X is not sufficient to reconstruct j and spectral clustering

fails to properly separate the xi ’s (ζ= 0). Conversely, if ∥µ∥2 >p
c, the strength of the signal is sufficient

to distinguish it from the noise and the partial reconstruction of j from the observation X is possible
(ζ> 0). Moreover, the “amount of accessible information” in X is explicitly given by ζ as a function of
∥µ∥2. Note that spectral clustering is information-theoretically optimal in this setting (Onatski et al.,
2013; Löffler et al., 2021), meaning that it achieves the best clustering performance as soon as it is
theoretically possible. In other words, there is no hard phase and we jump directly from the impossible
phase to the easy phase at ∥µ∥2 = p

c. The study of such spiked random matrix models related to
clustering problems is the main topic of Part I of this thesis.

1.2.3 Random Tensors and Random Matrices

All the tools introduced so far are designed for the study of large random matrix models. Yet, modern
challenges in statistical learning concern not only large but also multidimensional data. Thus, we are
also interested in large random tensors. The statistical analysis of the latter is rather new — it essen-
tially started with the work of Montanari and Richard (2014) — and there is still no proper “random
tensor theory”. Nonetheless, we can rely on the powerful concepts and tools of the well-established
random matrix theory to provide a better theoretical understanding of statistical inference on tensor
data.

The careful reader may have noticed that the random tensor model in Equation (1.2) corresponds
to what we could (and will) call a spiked tensor model. Once again, we shall consider signal-plus-
noise models: the observed tensor is expressed as T =P+N ∈ Rn1×...×nd , modeling a low-rank signal
P perturbed by an additive noise N. Reconstructing P from the observation T consists in finding a
solution to

min
X∈M

∥T−X∥2
F (1.9)

where M is a set of low-rank tensors which shall be properly defined in Section 2.4.2. How can we
tackle this optimization problem involving a random tensor with our set of tools from the theory of
large random matrices?

A first idea is to study the unfolded tensor, that is, a matrix constructed by “flattening” the original
tensor T. This operation is usually performed along a given mode. For example, the unfolding of T
along the first mode, denoted T (1), is an n1 ×

∏d
ℓ=2 nℓ matrix whose i -th line is made of all the entries

of T, in a certain predefined order, obtained by fixing the first index to i . Therefore, we are left to
study a random matrix instead of a random tensor. However, this operation comes at a high cost, for it
essentially wipes out the structural information in the data, which was precisely our main motivation
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for considering multidimensional arrays! Moreover, as the tensor is “large”, we assume that all dimen-
sions grow at a similar rate n1, . . . ,nd =Θ(N ) →+∞. Hence, the second dimension of T (1) grows at a
faster polynomial rate Θ(N d−1) than the first one Θ(N ), which is different from the standard random
matrix regime where both dimensions have similar sizes.

In fact, the structural information can be preserved if we consider all the unfoldings T (1), . . . ,T (d)

as a whole. Hence, instead of a random tensor we study a set of d long random matrices (Ben Arous
et al., 2023). This approach will allow us to analyze the reconstruction performance of standard tech-
niques designed to provide low-rank tensor approximations, namely a truncated version of the multi-
linear singular value decomposition (De Lathauwer et al., 2000b) — which is an extension of the com-
mon singular value decomposition for matrices — and the higher order orthogonal iteration (HOOI,
De Lathauwer et al., 2000a). Among the various algorithms designed to estimate a solution to Problem
(1.9), HOOI is among the ones having the lowest critical signal-to-noise ratio value required for a non-
trivial estimation — i.e., with non-zero alignment — of the perturbation P (Montanari and Richard,
2014; Hopkins et al., 2015). However, it does not reach the information-theoretic lower bound estab-
lished by Perry et al. (2020) and it is therefore conjectured that this problem exhibits a hard phase and
that HOOI (among other algorithms) actually reaches the computational threshold (Ben Arous et al.,
2019). The “tensor unfolding approach”, which we develop in Part II of this thesis, is thus useful to
study the reconstruction performance near the transition between the hard and easy phases.

In order to complete the picture, the following natural question concerns the analysis of Problem
(1.9) near the statistical threshold, that is, near the transition between the impossible and hard phases.
The recent works of Goulart et al. (2022) and Seddik et al. (2022) showed that the study of a spiked
tensor model can be reduced to that of an equivalent spiked random matrix model. In particular,
Seddik et al. (2022) considered the rank-one asymmetric spiked model consisting in a perturbation
P = σx (1) ⊗ x (2) ⊗ x (3) ∈ Rn1×n2×n3 , with σ > 0 controlling the signal-to-noise ratio and x (ℓ) ∈ Snℓ−1,

ℓ ∈ {1,2,3}, observed as T =σx (1) ⊗x (2) ⊗x (3) + 1p
N
N where Ni , j ,k

i.i.d.∼ N (0,1) and N = n1 +n2 +n3. In

this particular setting, Problem (1.9) becomes

min
ς>0, y (ℓ)∈Snℓ−1

∥∥T−ςy (1) ⊗ y (2) ⊗ y (3)∥∥2
F.

Given a solution (σ̂, x̂ (1), x̂ (2), x̂ (3)) to this problem, Seddik et al. (2022) are able to recover the asymp-
totic behavior of σ̂ and the alignments 〈x (ℓ), x̂ (ℓ)〉2, through, notably, the analysis of an associated
symmetric random matrixΦ defined by blocks as

Φ=
 0n1×n1 T(·, ·, x̂ (3)) T(·, x̂ (2), ·)
T(·, ·, x̂ (3))⊤ 0n2×n2 T(x̂ (1), ·, ·)
T(·, x̂ (2), ·)⊤ T(x̂ (1), ·, ·)⊤ 0n3×n3

.

Recall that, as T describes a 3-linear form on Rn1 ×Rn2 ×Rn3 , the contraction of T on a single vector
describes a bilinear form, which we identify as a matrix. This model has a complicated structure be-
cause the vectors x̂ (1), x̂ (2), x̂ (3), on which T is contracted, actually depend on the noise N. Yet, relying
on the Stieltjes transform and resolvent approach, its analysis is still amenable to precise asymptotic
results near the statistical threshold. This interesting approach leading to unusual new random matrix
models is a promising direction to complete the results of Part II.

Remark 1.4. In fact, as it was mentioned in Remark 1.2, the results found with this approach are valid
for all values of σ such that there exist an informative local optimum, even if this is not the global one.
Hence, it predicts positive alignments even (slightly) below the actual statistical threshold! The precise
characterization of the latter requires different tools which we shall not discuss here, see Jagannath
et al. (2020); Zdeborová and Krzakala (2016).
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1.3 Practical, Societal and Environmental Challenges of the Big
Data Era

Before delving further into mathematical considerations, let us take a step back in order to reflect on
the physical reality of what is at stake here. This (relatively short) digression is meant to serve as a
warning against potential excessive usage of the technology, on which machine learning inherently
relies, in the context of drastic environmental changes caused by human activities since the industrial
revolution. We do not intend to argue in favor or against the use of machine learning, nor to propose
solutions, but simply to provide some elements of the background behind the mathematical questions
in this thesis. For a general presentation of the current trends of global warming, we naturally refer
to the 2023 Synthesis Report on Climate Change of the Intergovernmental Panel on Climate Change
(IPCC).

In 2014, at the request of the United Nations Secretary-General, the Independent Expert Advisory
Group on a Data Revolution for Sustainable Development prepared a report gathering recommenda-
tions on how the data revolution can be mobilized for sustainable development. In particular, the
introducing words of its executive summary state:

Data are the lifeblood of decision-making and the raw material for accountability. Without
high-quality data providing the right information on the right things at the right time;
designing, monitoring and evaluating effective policies becomes almost impossible.

The document shows how the increasing volume of data should be used by policy makers to achieve
their “sustainable development goals” announced in the 2030 agenda of the United Nations. Recalling
the origins of statistics, the report claims that demographic data allow to “know more about the state
of the world”. However, it never mentions the high environmental footprint of the data revolution,
which undeniably threatens sustainable development (Meadows et al., 1972).

1.3.1 The Physical Reality of Big Data

The past decades have seen a rapid development of Artificial Intelligence (AI), and machine learning
in particular. This is allowed by the dazzling enhancement of computational resources and the mas-
sive growth of available data, notably via numerous sensors, mobiles phones, digitization of processes
and services. The fast processing and intensive storage of data has been ground-breaking in many so-
cietal domains — the processing of transport and travel preferences allows to predict and avoid road
congestion and accidents, the analysis of consumers’ preferences allows more targeted and effective
marketing strategies, information about students’ progress and learning habits allow the understand-
ing of learning patterns and the design of more effective educational programs, etc.

Yet, the unstoppable pursuit of enhancement of AI models creates a voracious demand in comput-
ing power, which has significant consequences on global climate change (Wu et al., 2022). Although
data appears to the user as a virtual object stored in a “cloud”, it has a very real physical existence,
notably via invisible data centers, “the central nervous system of the 21st century” (Whitehead et al.,
2014). This equipment stores, manages and processes digital data, as well as it provides applications
and services for data processing. Thus, data centers consume an increasing amount of energy to run
their operations and cool down their servers, resulting in a heavy environmental footprint (Whitehead
et al., 2014; Williams, 2011). The growing use of internet, online services and connected objects raises
the demand for data and service availability which in turn requires that data be stored in servers in
multiple sites and centers. Hence, there are also broader ethical questions about the desirability of
such a data revolution requiring attention, see Lucivero (2020).

Moreover, the increasing demand for new hardware puts pressure on the construction of new de-
vices, which also represents a threat for the environment, and human rights as well. Indeed, the min-
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ing of ore needed for high-tech devices, benefiting for the most part to the richest people on Earth, is
essentially performed in poor countries, where working conditions are less restrictive. The quest for
these precious resources causes widespread deforestation and the chemicals used for mineral separa-
tion pollute streams and rivers, releasing substances harmful to aquatic life and human health. Chil-
dren are not exempted from the labor, which is performed under dangerous conditions. Moreover,
it often contributes to fomenting tensions in the concerned countries, as in the Democratic Repub-
lic of Congo, where the land grab of Chinese companies for coltan mining nourishes a war between
rebel groups and the Congolese army, perpetuating a cycle of poverty and violence (Constantine and
Wolff, 2023). Manufacturing of new hardware suffers from similar issues as it is also conducted in poor
countries (mostly south-east Asia), with a low cost of manpower, in tragic working conditions.

But a larger production of devices also means a larger amount of waste to handle. Here again, poor
countries are at the mercy of the richer ones. In 2022, 62 billion kg of electronic waste were produced
worldwide, among which only 13.8 billion were formally collected and recycled in an environmentally
sound manner (Baldé et al., 2024). The rest is either handled outside formal systems in high- and
upper-middle-income countries (16 billion), in low- and lower-middle-income countries (18 billion)
or disposed as residual waste (14 billion). The biggest producers of electronic waste are in Europe,
Oceania and Americas but they are not those who suffer the most from it. Indeed, the disposal of
computing hardware produces harmful emissions and is environmentally detrimental, particularly in
low- and middle-income countries, which have lower environmental controls and where recovery of
valuable materials such as copper and gold in hardware through practices like incineration results in
aggravated environmental pollution (Williams, 2011; Baldé et al., 2024).

The insatiable hunger for new technology and capitalistic growth fuels an environmental and hu-
man crisis worldwide. While investment in AI development keeps soaring, research in data science
cannot pretend to be independent from this disastrous situation.

1.3.2 Sustainable Big Data Initiatives: Myth or Reality?

In view of this alarming reality, several works propose new tools and methods for a frugal AI relying,
e.g., on tools monitoring energy consumption (Jay et al., 2023), edge computing promoting locally
distributed computations (Angelelli et al., 2023) or compressive learning (Gribonval et al., 2021). In
essence, frugal AI seeks to minimize resource usage but under the constraint that it achieves a certain
performance. This allows to execute competitive learning tasks under limited memory or computing
resources. In other words, performance is no longer the only metric to evaluate a given model, it has
to be combined with an evaluation of its need for resources. For example, even if GPT-4 (OpenAI,
2024) is among the best current large language models according to the sole measure of performance,
its exorbitant size (1.76 trillion parameters) and the enormous cost of its training4 certainly place it
among the worst models according to the resource-usage metric.

However, simply reducing the energy consumption of AI models does not necessarily mean that
less energy is spent for the same result after all. In fact, it is more commonplace that this improve-
ment is used to do more with the same amount of energy as before — this is the well-known rebound
effect (Thiesen et al., 2008). Too often, such user-related effects are neglected in assessments of the en-
vironmental impacts of information and communication technologies (Pohl et al., 2019). By naively
seeking to do more with less, the basic conception of frugal AI may therefore only promote a business-

4Although this is not yet known, studies on the previous GPT-3 model give an idea of what this could represent. The training
of GPT-3 required 1 287 MWh of energy, that is 552 tons of net CO2eq emissions (Patterson et al., 2021). Knowing that it had
“only” 175 billion parameters, a simple application of the rule of three gives an estimated 13 000 MWh of energy (6 000 tons of
net CO2eq emissions) for the training of GPT-4, which is equivalent to the energy consumption of almost 3 000 “typical” French
households during a year! In fact, this quick calculation assumes that the energy consumption depends linearly on the number
of parameters, this dependence is more realistically expected to be exponential. Thus the actual training cost should be even
bigger.
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as-usual scenario, where the central place of technology nourishes a human and environmental crisis.
Despite its admirable motivating intentions, frugal AI fails to trigger a profound paradigm shift.

From a broader perspective, AI is not just a very powerful tool which is unfortunately also very
energy-demanding — it deeply changes our way to live and relate to others. Relying on high-tech de-
vices, the technology required to run AI models leaves users with a very low power of action on their
own tool and it creates a high level of dependence. Moreover, technological devices are so sophisti-
cated that they are often replaced by new ones instead of being repaired, which creates a greater need
for resources. In this context, Couillet et al. (2022) promote a resilient AI that takes into account a
broader set of metrics — in addition to performance and resource usage, it also considers robustness
and repairability, power of action of the user, level of dependence to the tool and environment preser-
vation and accessibility. In essence, resilient AI seeks a certain degree of simplicity in the final tool. As
a striking example, instead of a black-box neural network working on a computer, a simple decision
tree written on a sheet of paper may achieve a (slightly) smaller performance but it is a more versatile
tool which gives a much bigger power of action to the user.

1.3.3 The Ambiguous Position of This Work

This thesis is concerned with the mathematical aspects of random matrix and tensor models moti-
vated by machine learning and statistical signal processing applications. After what has been said,
the strange situation in which the reader may find himself with regard to the latter gives a glimpse of
the psychological context in which the author was during the preparation of this thesis. Nevertheless,
it is a crying passion for mathematics which carried it to this result, in the hope that it will do more
good than harm at a time where information could become the new deadly weapon of the 21st century
(Nguyen Hoang and El Mhamdi, 2019; Nguyen Hoang and Fourquet, 2024).

Now I am become Death, the destroyer of worlds.
Bhagavad Gita, Chapter 11, Verse 32

1.4 Outline and Contributions

Chapter 2 presents the main technical tools used in the following chapters. In particular, the central
tools and results of random matrix theory are stated and followed by an introduction to the “Gaus-
sian method” which is extensively used throughout this thesis. Notably, we present a comprehen-
sive demonstration of the spectral analysis of a standard signal-plus-noise model (convergence to the
Marčenko-Pastur distribution, confinement of the spectrum, position of spike eigenvalues and align-
ments of spike eigenvectors) in the real case, which lacks in the current literature. This chapter ends
with basic notions on tensors and their decompositions.

Part I: Resource-Efficient Spectral Clustering

Firstly, we consider random matrix models related to spectral clustering. Chapter 3 establishes a cen-
tral limit theorem on the distribution of the entries of spike eigenvectors. This result is crucial to
accurately predict the clustering performance of spectral clustering methods and we rely on it in the
following chapters. Its proof relies solely on the rotational invariance of the noise and can easily be
extended to any standard spiked model other than the signal-plus-noise model.

In Chapter 4, a new random matrix model — namely, a “banded” Gram kernel matrix — is intro-
duced to study the performances of spectral methods on data stream clustering. Our random matrix
analysis allows to characterize the spectral behavior of the model and therefore the detectability of a
signal in a data stream. Besides the study of a non-standard random matrix model exhibiting an exotic
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spectral behavior, these results give precious insights into the online clustering problem. Then, rely-
ing on this analysis, we describe the reconstruction performance of this spectral method and show
how, with an astute memory management, it outperforms batch clustering under limited memory
constraints. These results are supported by numerical experiments.

Lebeau, Chatelain, and Couillet (2024a) Asymptotic Gaussian Fluctuations of Eigenvectors in Spec-
tral Clustering (IEEE Signal Processing Letters)

Lebeau, Couillet, and Chatelain (2022a) Une analyse par matrices aléatoires du clustering en ligne :
comprendre l’impact des limitations en mémoire (GRETSI)

Lebeau, Couillet, and Chatelain (2022b) A Random Matrix Analysis of Data Stream Clustering: Cop-
ing With Limited Memory Resources (ICML)

Part II: Algorithms for Tensor Approximation

In the second part of this thesis, we study random tensor models through the random matrices cor-
responding to their unfoldings. In particular, Chapter 5 proposes an analysis of a simple low-rank
tensor approximation which generalizes the truncated singular value decomposition on matrices to
higher-order tensors. The main results show that, after a proper rescaling, the unfoldings behave like
the well-known spiked Wigner model (see Section 2.2.1). Therefore, we can precisely characterize the
reconstruction performance of the truncated multilinear singular value decomposition on a signal-
plus-noise tensor model. Despite not being optimal on tensors of order d Ê 3, this quasi-optimal
solution is easy to compute and is an efficient initialization for a numerical scheme estimating the op-
timal solution: the higher order orthogonal iteration (De Lathauwer et al., 2000a), whose performance
we characterize as well. In particular, we prove that this algorithm is asymptotically optimal, in the
sense that its number of iterations converges to 1 as the size of the tensor grows large.

Relying on a similar approach, we study in Chapter 6 the performance of multi-view clustering
via a nested matrix-tensor model. This newly-introduced model generalizes the standard rank-one
spiked tensor model in that it adds a third term mixing a signal vector with a noise matrix. Our ran-
dom matrix analysis of the unfoldings describes under which setting a reconstruction of the signal
is possible, depending on the difficulty of the problem and the informativeness of the views. These
results are compared with the performance of the maximum likelihood estimator derived by Seddik
et al. (2023a). Thereby, we bring to light and precisely quantify the computational-to-statistical gap in
this problem.

Lebeau, Couillet, and Chatelain (2023) HOSVD Tronquée : Analyse d’une Approximation Tensorielle
Rapide (GRETSI)

Lebeau, Chatelain, and Couillet (2024b) A Random Matrix Approach to Low-Multilinear-Rank Ten-
sor Approximation (accepted to JMLR)

Lebeau, Seddik, and Goulart (2024c) Performance Gaps in Multi-view Clustering under the Nested
Matrix-Tensor Model (ICLR)
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Chapter 2

Technical Tools

FUNDAMENTAL random matrix tools and the basic concepts needed for the study of random ten-
sors are presented in this chapter. We start by introducing the basic objects and identities on

which we rely throughout this thesis in Section 2.1. Central random matrix results such as the Wigner
semi-circle law and the Marčenko-Pastur distribution are presented in Section 2.2. Then, Section 2.3
illustrates the “Gaussian method” on a standard spiked signal-plus-noise model. This case study gives
the elementary intuitions behind the analysis of more involved spiked models. Finally, Section 2.4 is a
short introduction to tensors as multi-way arrays and their main decompositions, namely the canon-
ical polyadic decomposition (CPD) and the multilinear singular value decomposition (MLSVD).

For a general introduction to random matrices, we refer to any of the following books: Ander-
son et al. (2009); Bai and Silverstein (2010); Pastur and Shcherbina (2011); Tao (2012); Potters and
Bouchaud (2020); Couillet and Liao (2022).

2.1 Elements of Random Matrix Theory

Throughout this section, we consider a random n×n symmetric matrix S. The set of all its eigenvalues
is its spectrum SpS ⊂ R. We denote λ1(S) Ê . . . Ê λn(S) its eigenvalues in non-increasing order and
u1(S), . . . ,un(S) ∈Rn the columns of U ∈On(R) such that S =UΛU⊤ withΛ= Diag(λ1(S), . . . ,λn(S)).

We start by defining the central object to study the spectral behavior of S in the global regime.

Definition 2.1. The resolvent of S is QS : z ∈C\ SpS 7→ (S − zIn)−1.

Notice that QS (z) is a symmetric (but not Hermitian unless z ∈R\SpS) matrix. It also has the useful
property that its spectral norm is bounded.

Proposition 2.2. For all z ∈C\ SpS, ∥QS (z)∥ = 1/Dist(z,SpS) É 1/|ℑz|.

Proof. From the definition of the resolvent, ∥QS (z)∥2 = maxλ∈SpS |λ− z|−2 É |Dist(z,SpS)|−2 É |ℑz|−2.

Remark 2.3 (Sequences of matrices). Each time we consider the limiting behavior of a random matrix,
we implicitly deal with a sequence of random matrices indexed by their size. The same goes for the
related objects (resolvent, Stieltjes transform, eigenvalues, etc.). This has the double advantage to
ease the notation (by removing the index n) and to be closer to what this large-dimensional regime
actually models (in practice, matrices are large but remain finite).
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2.1.1 Global Behavior of the Eigenvalues

Often, we want to characterize the limiting global behavior of the eigenvalues of S as n →+∞. Thus,
we consider its empirical spectral distribution (ESD).

Definition 2.4. The empirical spectral distribution of S is 1
n

∑
λ∈SpS δλ.

Probability distributions are studied through their Stieltjes transforms.

Definition 2.5. The Stieltjes transform of a real probability measure µ is m : z ∈ C \ Suppµ 7→ ∫
R

dµ(t )
t−z

where Suppµ⊂R is the support of µ.

An important property is that the Stieltjes transform of the empirical spectral distribution is the
normalized trace of the resolvent.

Proposition 2.6. The Stieltjes transform of 1
n

∑
λ∈SpS δλ is 1

n TrQS .

Proof. Let µ= 1
n

∑
λ∈SpS δλ. Its support is the spectrum of S. Hence, for all z ∈C\ SpS,∫
R

dµ(t )

t − z
= 1

n

∑
λ∈SpS

1

λ− z
= 1

n
TrDiag

(
1

λi (S)− z

)
i∈[n]

= 1

n
TrQS (z).

We give the following interesting properties of the Stieltjes transform without proof.

Proposition 2.7 (Properties of the Stieltjes transform). Let µ be a real probability measure and m be its
Stieltjes transform.

1. m is an analytic function on C\ Suppµ.

2. For all integer k Ê 0 and z ∈C\ Suppµ, |m(k)(z)| É k !
Dist(z,Suppµ)k+1 É k !

|ℑz|k+1 .

3. Sign(ℑ[m(z)]) = Sign(ℑz).

4. Suppµ⊂ [0,+∞[ ⇐⇒ Sign(ℑ[zm(z)]) = Sign(ℑz).

5. limy→±∞−iym(iy) = 1.

6. x 7→ m(x) is an increasing function on all connected components of R\ Suppµ.

The following theorem gives criteria to identify a complex-valued function as the Stieltjes trans-
form of a probability measure.

Theorem 2.8 (Herglotz). If the function m is analytic on C+ def= {z ∈C | ℑz > 0} and satisfies

1. ℑm(z) Ê 0 for all z ∈C+,

2. |m(z)| É 1/ℑz for all z ∈C+,

3. limy→+∞−iym(iy) = 1,

4. m(z̄) = m(z) for all z ∈C+,

then m is the Stieltjes transform of a unique probability measure on R.

Proof. See Weidmann (1980, Theorem B.3).
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As the Stieltjes transform of the empirical spectral measure of S is a random quantity, it is often
easier to study its expectation. We have the following important corollary to Theorem 2.8.

Corollary 2.9. E[ 1
n TrQS ] is the Stieltjes transform of a unique probability measure on R.

Proof. mn
def= 1

n TrQS is the Stieltjes transform of the empirical spectral distribution of S (Proposi-
tion 2.6). Let us show that E[mn] is analytic. Let z0 ∈ C+ and ε ∈]0,ℑz0[. Our choice of ε is such

that B(z0,ε)
def= {z ∈ C | |z − z0| < ε} ⊂ C+. We have supz∈B(z0,ε)|mn(z)| É (ℑz0 − ε)−1 and, because

m′
n = 1

n TrQ2
S , supz∈B(z0,ε)|m′

n(z)| É (ℑz0 −ε)−2. With these two upper bounds, we can apply the stan-
dard theorems of continuity and differentiation of integrals depending on a parameter (see, e.g., The-
orem 2.12 and Theorem 2.13 of Le Gall (2022)). Hence E[mn] is differentiable for all z ∈ B(z0,ε) and
thus analytic on C+. Then, from the properties of mn , it is easy to check that ℑE[mn(z)] Ê 0 and
|E[mn(z)]| É 1/ℑz for all z ∈ C+. Finally, limy→+∞−iyE[mn(iy)] = 1 by the dominated convergence

theorem (Le Gall, 2022, Theorem 2.11) and E[mn(z̄)] = E[mn(z)] for all z ∈C+.

The weak convergence1 of the empirical spectral distribution of S can be characterized via the
pointwise convergence of its Stieltjes transform.

Proposition 2.10 (Convergence of Stieltjes transforms). Let (µn)nÊ0 be a sequence of real probability
measures and, for all n Ê 0, mn be the Stieltjes transform of µn .

(a) If there exists a subset S ⊂ C+ def= {z ∈ C | ℑz > 0} containing an accumulation point2 such that,
for all z ∈S , mn(z) → m̄(z) as n →+∞, then there exists a measure µ̄ such that µ̄(R) É 1 and

m̄(z) =
∫
R

dµ̄(t )

t − z
for all z ∈S .

(b) Moreover, if limy→+∞−iym̄(iy) = 1, then µ̄(R) = 1 and µn → µ̄ weakly as n →+∞.

Proof. See Geronimo and Hill (2003).

When µn is the empirical spectral distribution (ESD) of S, µ̄ is called its limiting spectral distribu-
tion (LSD). It can be recovered thanks to the inverse Stieltjes transform.

Proposition 2.11 (Inverse Stieltjes transform). Let µ be a real probability measure and m be its Stieltjes
transform.

1. If a,b ∈R, a < b, are continuity points of µ, i.e., µ({a}) =µ({b}) = 0, then,

µ([a,b]) = lim
y↓0

1

π

∫ b

a
ℑ[m(x + iy)] dx.

2. If µ has a density at x ∈R then,

dµ

dx
(x) = 1

π
lim
y↓0

ℑ[m(x + iy)].

3. If µ has an atom at x ∈R then,
µ({x}) = lim

y↓0
−iym(x + iy).

1A sequence of probability measures (µn )nÊ0 is said to converge weakly to µ̄ if
∫

f dµn → ∫
f dµ̄ as n →+∞ for all bounded

continuous functions f .
2z0 ∈C is an accumulation point of S if, for all ε> 0, there exists z ∈S \ {z0} such that |z0 − z| < ε.
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Proof. See Couillet and Liao (2022, Theorem 2.1).

A common way to study the asymptotic behavior of the spectrum of a random symmetric matrix
S is to show the existence of a limiting spectral distribution by proving the pointwise convergence of
the Stieltjes transform of the empirical spectral distribution (Proposition 2.10). Typically, the asymp-
totic analysis of the resolvent QS and Proposition 2.6 give a fixed point equation characterizing the
Stieltjes transform of the limiting spectral distribution. The sought probability measure can then be
reconstructed thanks to Proposition 2.11.

However, the existence of a limiting spectral distribution µ̄ does not necessarily mean that every
eigenvalue of S must lie within Supp µ̄ for n large enough. Indeed, a o(n) number of eigenvalues can
stay outside the limiting measure without affecting it since it has a o(1) mass. In order to prove that
no eigenvalue stays outside the support of the limiting spectral distribution, a powerful tool is often
the following formula.

Proposition 2.12 (Helffer-Sjöstrand formula). Let µ be a probability measure on R and m be its Stielt-
jes transform. Let f : R → R be a compactly supported function which has a continuous (k + 1)-th

derivative (k Ê 1). We defineΦk [ f ], the quasi-analytic extension of f on C+ def= {z ∈C | ℑz > 0} as

Φk [ f ](z) =
k∑

l=0

(iℑz)l

l !
f (l )(ℜz)χ(ℑz)

where χ :R→ [0,1] is an infinitely differentiable even function such that3 χ(y) = 0 if |y | Ê 1 and χ(y) = 1
if |y | É δ for some δ ∈]0,1[. Then, ∫

R
f dµ= 2

π
ℜ

∫
C+

∂Φk [ f ]

∂z̄
(z)m(z) dz

where
∂

∂z̄
= 1

2

(
∂

∂ℜz
+ i

∂

∂ℑz

)
is the Wirtinger derivative.

Proof. The support ofΦk [ f ] is compact therefore an integration by parts gives

2

π
ℜ

∫
C+

∂Φk [ f ]

∂z̄
(z)m(z) dz = 2

π
ℜ

[
1

2

∫ +∞

0

(∫ +∞

−∞
∂Φk [ f ]

∂x
(x + iy)m(x + iy) dx

)
dy

+ i

2

∫ +∞

−∞

(∫ +∞

0

∂Φk [ f ]

∂y
(x + iy)m(x + iy) dy

)
dx

]
= 2

π
ℜ

[−i

2

∫
R

lim
y↓0

{
Φk [ f ](x + iy)m(x + iy)

}
dx −

∫
C+
Φk [ f ](z)

∂m

∂z̄
(z) dz

]
.

Since m is an analytic function, the Cauchy-Riemann equations give ∂m/∂z̄ = 0 and the second in-
tegral of the right-hand side is zero. Then, as the limit of a product is the product of the limits and
limy↓0Φ[ f ](x + iy) = f (x), we have

2

π
ℜ

∫
C+

∂Φk [ f ]

∂z̄
(z)m(z) dz =ℜ

[−i

π

∫
R

f (x)

(
lim
y↓0

m(x + iy)

)
dx

]
.

Finally, observing that ℜ[−iz] = ℑz and dx
π limy↓0ℑ[m(x + iy)] = dµ(x) (from Proposition 2.11) con-

cludes the proof.

3An example of such function is χ : y 7→ g
(

1+y
1−δ

)
g
(

1−y
1−δ

)
with g (u) = f (u)

f (u)+ f (1−u) and f (u) =
{

exp(−1/u) if u > 0
0 if u É 0

.
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Remark 2.13. Since χ is constant on ]0,δ], 0 <ℑz É δ =⇒ ∂Φk [ f ]
∂z̄ (z) = 1

2
(iℑz)k

k ! f (k+1)(ℜz). The greater k,

the faster the convergence to zero of ∂Φk [ f ]
∂z̄ as ℑz ↓ 0. This is particularly useful to evaluate quantities

such as
∫

f dµ1−
∫

f dµ2 from the knowledge that the Stieltjes transforms m1,m2 ofµ1,µ2 (respectively)
satisfy |m1(z)−m2(z)| =O (|ℑz|−k ) as ℑz ↓ 0:∫

f dµ1 −
∫

f dµ2 =
2

π
ℜ

∫
C+

∂Φk [ f ]

∂z̄
(z)(m1(z)−m2(z))︸ ︷︷ ︸
=O (1) as ℑz↓0

dz.

The smoothness of f compensates for the divergence of m1(z)−m2(z) near the real axis.

The next lemma is a handy result to evaluate some integrals which appear after using the Helffer-
Sjöstrand formula.

Lemma 2.14. Let K be a compact subset of R and h be an analytic function on C\K such that

1. lim|z|→+∞ h(z) = 0,

2. h(z̄) = h(z) for all z ∈C\K ,

3. there exist an integer n0 Ê 1 and a constant CK > 0 such that |h(z)| É CK max(Dist(z,K )−n0 ,1)
for all z ∈C\K .

Then, limy↓0
1
π

∫
Rℑ[h(x + iy)] dx = limy→+∞−iyh(iy).

Proof. According to Theorem 5.4 of Schultz (2005) (see also Capitaine et al. (2009, Theorem 4.3);
Loubaton (2016, Lemma 9.1)), h is the Stieltjes transform of a compactly-supported Schwartz dis-
tribution (Rudin, 1991, Chapter 6) and therefore satisfies the stated result.

2.1.2 Isolated Eigenvalues and Eigenvectors

In the perturbed random matrix models we will consider, a finite number of eigenvalues may converge
outside the support of the limiting spectral distribution. Once the latter is accurately characterized,
our attention moves to these isolated eigenvalues in the spectrum of S and their corresponding eigen-
vectors. Given that QS : z 7→ (S − zIn)−1 is defined for all z ∈C which is not an eigenvalue of S, the set
of asymptotic positions of isolated eigenvalues is[

limsup
n→+∞

SpS
]

\ Supp µ̄

where µ̄ is the limiting spectral distribution of S.
Let us recall two useful results to study the corresponding eigenvectors of S.

Proposition 2.15 (Cauchy’s integral formula). Let U be a simply-connected subset of C, f : U → C be
a holomorphic function and γ ⊂ U be a positively-oriented simple closed contour. Denote γ̊ the open
subset of U delimited by γ. Then,

− 1

2iπ

∮
γ

f (z)

z0 − z
dz = f (z0)1{z0∈γ̊}.

Proposition 2.16 (Residue theorem). Let U be a simply-connected subset of C, f : U → C be a mero-
morphic function and γ⊂U be a positively-oriented simple closed contour which does not contain any
singular point of f . Let S be the set of singular points of f inside the open set delimited by γ. Then,

1

2iπ

∮
γ

f (z) dz =
∑

s∈S

Res( f , s)
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where Res( f , s) is the residue of f at the order-n pole s,

Res( f , s) = 1

(n −1)!
lim
z→s

∂n−1

∂zn−1

[
(z − s)n f (z)

]
.

To see why these results are useful, observe that

QS (z) = (
UΛU⊤− zIn

)−1 =U (Λ− zIn)−1U⊤ =
n∑

i=1

ui (S)ui (S)⊤

λi (S)− z
.

Thus, according to Proposition 2.15, for all a,b ∈Rn ,

a⊤Πb =− 1

2iπ

∮
γi

a⊤QS (z)b dz with Π=
∑

1É jÉn
λ j (S)=λi (S)

u j (S)u j (S)⊤

whereΠ is the projection matrix on the eigenspace associated toλi (S) (if the eigenvalue has multiplic-
ity one, this is simply ui (S)ui (S)⊤) and γi is a well-chosen positively-oriented simple closed (complex)
contour circling around λi (S) and leaving all the other eigenvalues outside. Furthermore, the integral
on the right-hand side can be evaluated using residue calculus (Proposition 2.16),

1

2iπ

∮
γi

a⊤QS (z)b dz = lim
z→λi (S)

(z −λi (S))a⊤QS (z)b.

At finite n, this is the limit at a random point of a random quantity. However, if λi (S) is an isolated
eigenvalue with a deterministic limit as n →+∞, the asymptotic analysis of the resolvent QS allows to
characterize the limiting behavior of a⊤Πb for all deterministic a,b ∈Rn .

2.1.3 Asymptotic Analysis of the Resolvent

It appears that the asymptotic analysis of QS is crucial to characterize the limiting spectral behavior of
S. To that end, we introduce the central notion of deterministic equivalent.

Definition 2.17 (Deterministic equivalent). Let X be a random n ×n matrix and X̄ be a deterministic
n×n matrix. We write X ↔ X̄ if, for all (sequences of) deterministic a,b ∈Rn and A ∈Rn×n of bounded
norm (respectively, Euclidean and spectral norm), we have,

a⊤(
X − X̄

)
b

a.s.−−−−−→
n→+∞ 0 and

1

n
Tr A

(
X − X̄

) a.s.−−−−−→
n→+∞ 0.

The matrix X̄ is called a deterministic equivalent of X .

A deterministic equivalent Q̄S (z) of the (random) resolvent QS (z) has the same scalar observations
as its random counterpart. Therefore, it is entirely sufficient to study the limiting spectral distribution
( 1

n Tr(QS − Q̄S ) → 0) as well as the alignments of the isolated eigenvectors (
∮
γ a⊤(QS − Q̄S )b dz → 0)

of S. Hence, exhibiting a deterministic equivalent of the resolvent is key to characterize the limiting
spectral behavior of S. The “Gaussian method” exposed in Section 2.3 presents a powerful approach
to derive such deterministic equivalents.

In particular, the following “Gaussian integration by parts” lemma, due to Stein (1981), is exten-
sively used to show the convergence in mean of the resolvent.

Lemma 2.18 (Stein, 1981). Let Z ∼ N (0,1) and f : R→ C be a polynomially bounded differentiable
function such that E[| f ′(Z )|] exists and is finite. Then,

E
[

Z f (Z )
]= E[ f ′(Z )

]
.
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Proof. Since limx→±∞| f (x)e−
x2
2 | = 0, an integration by parts yields

E
[

Z f (Z )
]= 1p

2π

∫
R

x f (x)e−
x2
2 dx = 1p

2π

∫
R

f ′(x)e−
x2
2 dx = E[ f ′(Z )

]
.

The almost sure convergence of bilinear forms and traces of the resolvent (Definition 2.17) is jus-
tified by the following powerful Poincaré-Nash inequality (Chen, 1982; Ledoux, 2001) together with
Lemma 2.20, which is a standard way to prove almost sure convergence relying on Markov’s inequal-
ity and the first Borel-Cantelli lemma.

Lemma 2.19 (Poincaré-Nash inequality). Let z ∼N (0p , Ip ) and f :Rp →C be a differentiable function
with polynomially bounded partial derivatives ∂1 f , . . . ,∂p f . Then,

Var( f (z)) É E
[∥∥∇ f (z)

∥∥2
]
=

p∑
i=1
E
[∣∣∂i f (z)

∣∣2
]

where ∇= [
∂1 . . . ∂p

]⊤
.

Proof. See Pastur and Shcherbina (2011, Proposition 2.1.6).

Lemma 2.20. Let (Xn)nÊ0 be a sequence of random variables on C. If E[Xn] → L ∈ C as n →+∞ and
there exists an integer κ Ê 1 such that

∑
nÊ0E[|Xn −E[Xn]|κ] < +∞, then Xn → L almost surely as n →

+∞.

Proof. Let ε> 0. By Markov’s inequality (Billingsley, 2012, Equation 5.31),

∑
nÊ0

P(|Xn −E[Xn]| Ê ε) É 1

εκ

∑
nÊ0

E
[|Xn −E[Xn]|κ]<+∞.

Thus, by the first Borel-Cantelli lemma4 (Billingsley, 2012, Theorem 4.3),

P

(
limsup
n→+∞

|Xn −E[Xn]| Ê ε
)
= 0.

This implies the almost sure convergence of (Xn)nÊ0 to L:

P

(
limsup
n→+∞

|Xn −L| Ê ε
)
ÉP

(
limsup
n→+∞

[|Xn −E[Xn]|+ |E[Xn]−L|] Ê ε
)
= 0.

The next elementary result is useful to compare inverse matrices and, in particular, resolvents.

Proposition 2.21 (Resolvent identity). Let A,B be two invertible matrices. A−1−B−1 = A−1(B −A)B−1.

Proof. A−1(B − A)B−1 = A−1B B−1 − A−1 AB−1 = A−1 −B−1.

We state another elementary result allowing to turn an n ×n determinant into a k ×k one. This is
especially interesting when n is large but k is small.

Proposition 2.22 (Sylvester’s identity). Let A ∈Cn×k and B ∈Ck×n . det(In + AB ) = det(Ik +B A).

4Given a sequence of events (An )nÊ0 in a probability space (Ω,A ,P), if
∑

nÊ0P(An ) converges then P(limsupnÊ0 An ) = 0.
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Proof. det(In + AB ) = det

[
In A
−B Ik

][
In 0n×k

B Ik

]
= det

[
In 0n×k

B Ik

][
In A
−B Ik

]
= det(Ik +B A).

Then, the Woodbury matrix identity (Guttman, 1946, Equation (13)) is particularly convenient to
express inverse of perturbed matrices as, notably, in signal-plus-noise models.

Proposition 2.23 (Woodbury identity). Let A ∈Cn×n , C ∈Ck×k and U ,V ∈Cn×k be such that A, C and
A +UCV ⊤ are invertible. Then,(

A +UCV ⊤)−1 = A−1 − A−1U
(
C−1 +V ⊤A−1U

)−1
V ⊤A−1.

Proof. Simply check that
(

A +UCV ⊤)[
A−1 − A−1U

(
C−1 +V ⊤A−1U

)−1
V ⊤A−1

]
= In .

In essence, the Woodbury identity states that the inverse of a perturbation of A is the inverse of A
plus a perturbation whose expression is explicitly given.

We conclude this section with an important theorem which informally states that knowing an an-
alytic function locally is enough to know it globally.

Theorem 2.24 (Vitali). Let ( fn)nÊ0 be a locally bounded5 sequence of analytic functions on a connected
open subset D ⊂ C. Assume that there exists a countable set of points E ⊂ D having an accumulation
point in D such that the limit of the complex sequence ( fn(z))nÊ0 exists for all z ∈ E . Then, ( fn)nÊ0

converges uniformly on compact subsets of D to an analytic function.

Proof. See Titchmarsh (1939, 5.21) or Schiff (1993, 2.4).

Theorem 2.24 can be used to extend the domain of a deterministic equivalent. If the resolvent
QS is defined on a domain D (usually C \ K where K is a compact subset of R) and its deterministic
equivalent Q̄S is only defined on a subset S ⊂ D with an accumulation point, then, provided that
the functionals a⊤(QS − Q̄S )b and 1

n Tr A(QS − Q̄S ) are analytic and bounded on D, their almost sure
convergence on S can be extended to any compact subset of D by Vitali’s convergence theorem and
the domain of the deterministic equivalent Q̄S can be similarly analytically-extended.

2.2 Central Random Matrix Results

In this section, we present some well-known results regarding the limiting spectral behavior of stan-
dard random matrix models, which we shall occasionally refer to in the following chapters.

2.2.1 Wigner Semicircle Law and Spiked Wigner Model

We call a Wigner matrix an n ×n symmetric matrix W such that, for all i , j ∈ [n] with i < j ,

Wi ,i
i.i.d.∼ 1p

n
Ld and Wi , j =W j ,i

i.i.d.∼ 1p
n

Lod

where E[Ld] = 0, Var(Ld) <+∞ and E[Lod] = 0, Var(Lod) = 1. The particular case where Ld =N (0,2)
and Lod = N (0,1) is of particular importance and is known as the Gaussian orthogonal ensemble
(GOE). Such matrices have a density g over the set of symmetric matrices given by

g (W ) = 1

Zn
e−

1
4 TrW 2

5That is, for all z0 ∈D, there exists M > 0 and a neighborhood V ⊂D of z0 such that | f (z)| É M for all z ∈ V .
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2.2. Central Random Matrix Results

where Zn is a normalizing constant such that
∫

g (W )dW = 1.
The following theorem, originally due to Wigner (1955), can be considered as the starting point of

random matrix theory.

Theorem 2.25 (Wigner, 1955). Let µSC be the semicircle distribution given by

dµSC(x) = 1

2π

√[
4−x2

]+dx.

The empirical spectral distribution of a Wigner matrix converges weakly in probability to µSC, that is,
for all bounded continuous function f and ε> 0,

lim
n→+∞P

(∣∣∣∣∣ 1

n

∑
λ∈SpW

f (λ)−
∫

f dµSC

∣∣∣∣∣> ε
)
= 0.

Remark 2.26. The proof of Wigner (1955) assumes that all moments of Ld and Lod are finite but this
is not needed for the result (Anderson et al., 2009, Theorem 2.1.21).

Of especial interest to us is the corresponding spiked Wigner model

X =βx x⊤+W ∈Rn×n

where, without loss of generality, β > 0 (otherwise multiply by −1), x ∈ Sn−1 and W is a Gaussian
Wigner matrix with Ld = Lod = N (0,1). X is a rank-one perturbation of the random matrix W . As
it was emphasized in the introduction and the previous section, our favorite approach to study the
spectral properties of this kind of signal-plus-noise model is through its resolvent.

Theorem 2.27. The resolvent QX : z 7→ (X −zIn)−1 has a deterministic equivalent Q̄X as n →+∞ which
satisfies

mSC(z)Q̄X (z)+ zQ̄X (z)+ In =βx x⊤Q̄X (z) for all z ∈C\ [−2,2]

where mSC is the Stieltjes transform of µSC.

Proof. This is proven with the same method as in Section 2.3.

Since the limiting spectral distribution of X is µSC (the LSD is not altered by the addition of a low-
rank perturbation6), we find, using Proposition 2.6 and the fact that 1

n Tr(QX (z)− Q̄X (z)) → 0 almost
surely as n →+∞ (Definition 2.17), that its Stieltjes transform satisfies

m2
SC(z)+ zmSC(z)+1 = 0 for all z ∈C\ [−2,2]. (2.1)

Moreover, we have the following explicit expression of the deterministic equivalent,

Q̄X =
(
βx x⊤+ 1

mSC(z)
In

)−1

where we have used the fact that m(z)+ z =− 1
mSC(z) according to Equation (2.1).

Corollary 2.28. If β> 1,

λ1(X )
a.s.−−−−−→

n→+∞ β+ 1

β
and 〈x ,u1(X )〉2 a.s.−−−−−→

n→+∞ 1− 1

β2 .

6This can be verified by comparing 1
n TrQX and 1

n TrQW with the resolvent identity (Proposition 2.21).
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Figure 2.1: Left: Empirical spectral distribution (ESD) of X = βx x⊤+W , the semicircle distribution
and the almost sure limit of λ1(X ). Right: Asymptotic alignment between x and u1(X ) as a function
of the position of the dominant eigenvalue of X . Experimental setting: n = 1000 and β= 3.

Proof. Since βx x⊤+ 1
mSC(z) In is singular if β = − 1

mSC(z) , the asymptotic position of λ1(X ) is found by

injecting this expression in Equation (2.1). The asymptotic alignment − 1
2iπ

∮
γ x⊤Q̄X (z)x dz is com-

puted by residue calculus with a positively-oriented simple closed complex contour γ circling around
λ1(X ) and leaving all other eigenvalues outside.

If βÉ 1, the random matrix model X is statistically equivalent to W (Péché, 2006; Féral and Péché,
2007), that is, the perturbation βx x⊤ has no impact on the limiting spectral behavior. Hence, Corol-
lary 2.28 exhibits a phase transition phenomenon: as soon as β > 1, it explicitly gives the asymptotic
position of the isolated eigenvalue and the alignment of the corresponding eigenvector with x .

2.2.2 Sample Covariance Matrix Model: Marčenko-Pastur and Friends

Recall the sample covariance matrix model considered in the introduction: Ĉ = 1
n X X ⊤ is a p×p matrix

where X is a p ×n matrix with i.i.d., zero-mean and unit-variance entries. Here, we formally state the
results regarding its limiting spectral behavior. Ĉ is a symmetric positive semidefinite matrix thus
its eigenvalues are real and non-negative. Its limiting spectral distribution is characterized by the
following theorem.

Theorem 2.29 (Marčenko and Pastur, 1967). As p,n →+∞ with p/n
def= c ∈]0,+∞[, the empirical spec-

tral distribution of Ĉ converges weakly in probability to the Marčenko-Pastur distribution

µMP =
[

1− 1

c

]+
δ0 +ν with dν(x) =

√
[x −E−]+[E+−x]+

2πcx
dx

and E± = (1±p
c)2.

The Marčenko-Pastur distribution is composed of an absolutely continuous part ν and a Dirac
mass at the origin which only exists if c > 1. As explained in the introduction, it describes the law of
the eigenvalues of a sample covariance matrix 1

p X X ⊤ or a Gram kernel matrix 1
n X ⊤X in the particular

case where X has i.i.d., zero-mean and unit variance entries. The following theorem generalizes this
result to a broader class of matrices.

Theorem 2.30 (Silverstein and Bai, 1995; Couillet and Liao, 2022, Theorem 2.6). Let X be a p×n matrix
with i.i.d., zero-mean and unit variance entries. Let C be an n × n symmetric positive semidefinite
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2.2. Central Random Matrix Results

matrix with bounded spectral norm and whose empirical spectral distribution converges weakly almost

surely to a probability distribution η as p → +∞. Then, as p,n → +∞ with p/n
def= c ∈]0,+∞[, the

empirical spectral distribution of 1
n X ⊤C X converges weakly almost surely to a probability distribution

µ̄ whose Stieltjes transform m̄ satisfies

m̄(z) =
[
−z + c

∫
R

t

1+ tm̄(z)
dη(t )

]−1

for all z ∈C\ Supp µ̄.

This result defines the Stieltjes transform m̄ of the limiting spectral distribution of 1
n X ⊤C X via a

fixed-point equation depending on η, the limiting spectral distribution of C . From Theorem 2.30, the
corresponding Stieltjes transforms for the Gram kernel matrix 1

p X ⊤C X and the sample covariance

matrix 1
n C 1/2 X X ⊤C 1/2 can be deduced. Indeed, for the Gram kernel matrix, notice that(

1

n
X ⊤C X − zIn

)−1

= n

p

(
1

p
X ⊤C X − n

p
zIn

)−1

and, since the Stieltjes transform is the normalized trace of the resolvent (Proposition 2.6), we find that
the limiting spectral distribution of 1

p X ⊤C X has its Stieltjes transform given by z 7→ 1
c m̄( z

c ). Then, for

the sample covariance matrix, observe that, denotingµ the empirical spectral distribution of 1
n X ⊤C X ,

that of 1
n C 1/2 X X ⊤C 1/2 is given by n

pµ− n−p
p δ0. Thus, the Stieltjes transform of the limiting spectral

distribution of the sample covariance matrix is z 7→ 1
c m̄(z)+ 1−c

c
1
z . In particular, if C = Ip , the empirical

spectral distribution of 1
n X X ⊤ converges to the Marčenko-Pastur distribution µMP (Theorem 2.29).

Taking η= δ1 in Theorem 2.30, we find that its Stieltjes transform mMP satisfies

zcm2
MP(z)− (1− c − z)mMP(z)+1 = 0 for all z ∈C\ SuppµMP. (2.2)

Figure 2.2 depicts the empirical and limiting spectral distributions of a sample covariance matrix
1
n C 1/2 X X ⊤C 1/2 when C has 3 distinct eigenvalues. The numerical computation of the LSD is per-
formed by computing m̄ with a fixed-point iteration on the equation given in Theorem 2.30 near the
real axis so that the corresponding density can be computed with the inversion formula (Proposition
2.11). We see that each eigenvalue of C creates its own “bulk” in the spectrum of 1

n C 1/2 X X ⊤C 1/2 and
the size of the latter is proportional to the multiplicity of the corresponding eigenvalue. These bulks
may merge if they are too close, as in the left panel of Figure 2.2.

The results of Theorem 2.29 and Theorem 2.30 describe the asymptotic global behavior of the
eigenvalues by specifying their limiting distribution. Yet, they say nothing about the possibility that
a few eigenvalues lie outside it. Indeed, since only the weak convergence of the empirical spectral
distribution is guaranteed, there may be a o(n) number of eigenvalues staying outside the limiting
support. The following result indicates when such a phenomenon can occur.

Theorem 2.31 (Bai et al., 1988; Bai and Silverstein, 1998). Under the setting of Theorem 2.30, further
assume that

max
1ÉiÉp

Dist(λi (C ),Suppη)
a.s.−−−−−→

p→+∞ 0.

1. If E[|Xi , j |4] <+∞, then for all connected component I ⊂R\Supp µ̄,
∣∣I ∩Sp 1

n X ⊤C X
∣∣ a.s.−−−−−−→

p,n→+∞ 0.

2. If E[|Xi , j |4] =+∞, then λ1
( 1

n X ⊤C X
) a.s.−−−−−−→

p,n→+∞ +∞.

This theorem states that the presence of eigenvalues outside the limiting support in the large
p,n regime is completely determined by the finiteness of the fourth moment of the entries of X . If
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Figure 2.2: Empirical spectral distribution (ESD) and limiting spectral distribution (LSD) of
1
n C 1/2 X X ⊤C 1/2 computed by inverting the Stieltjes transform found with Theorem 2.30. Experi-
mental setting: p = 300, n = 3000, X has i.i.d. N (0,1) entries and C is a diagonal matrix with ESD
1
3δ1 + 1

3δ3 + 1
3δ5 (left) or 1

6δ1 + 1
6δ3 + 2

3δ7 (right).

E[|Xi , j |4] is finite, there is asymptotically no eigenvalue outside the support of µ̄. Conversely, if Xi , j

has no fourth moment, there is at least one eigenvalue outside Supp µ̄ and the dominant eigenvalue
of 1

n X ⊤C X diverges as p,n →+∞.

Remark 2.32 (Exact separation). This result can be refined in the case of finite fourth moment by stat-
ing that the number of eigenvalues of 1

n X ⊤C X lying in each bulk is exactly proportional to the num-
ber of eigenvalues of C (repeated with multiplicity) that “generated” this bulk, see Bai and Silverstein
(1999).

2.2.3 Signal-plus-Noise Models

A signal-plus-noise matrix model is a particular case of spiked model in the form X = P + N where
N is a random matrix (the noise) and P is a finite-rank perturbation (the signal). Since the rank of P
remains finite while the size of X grows, we say that P is a low-rank perturbation (comparatively to
the rank of N which diverges almost surely as the matrix grows).

In this thesis, we mostly consider settings where the sought information is contained in the dom-
inant right singular subspace of P . Thus, it is convenient to represent P as LV ⊤ where L is a p ×K
matrix (K is the rank of P ) and V is an n ×K semi-orthogonal matrix7 whose columns are the right
singular vectors of P .

Then, we are concerned with the study of the random matrix X consisting of a zero-mean random
matrix N perturbed by a low-rank matrix P = LV ⊤ or, equivalently, a low-rank signal corrupted by
additive noise. In particular, depending on the strength of the perturbation — the singular values of P
—, we are interested in the alignment between the right singular subspace of P and the K -dimensional
dominant right singular subspace of X , that is, the dominant eigenspace of the Gram kernel matrix

K
def= 1

p
X ⊤X = 1

p

[
P⊤P +P⊤N +N⊤P +N⊤N

]
.

This matrix has the great advantage that it is symmetric and the tools presented in Section 2.1 directly
apply to it.

Regarding the noise, the random matrix N is often assumed having i.i.d. Gaussian entries (see the
discussion below). In this case, the “Gaussian method”, which we detail in the next section, allows the

7That is, V ⊤V = IK . The set of such matrices is the Stiefel manifold VK (Rn ).
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precise characterization of the limiting spectral behavior of K . In particular, we have the following
(now expected) result.

Theorem 2.33 (Limiting spectral distribution). The empirical spectral distribution of K = 1
p X ⊤X con-

verges weakly almost surely to µMP defined in Theorem 2.29 with parameter c−1 = n/p (instead of c).
Moreover, if P = 0p×n (no signal), no eigenvalue stays outside SuppµMP almost surely as p,n →+∞.

Proof. See Section 2.3.

Furthermore, with the additional assumptions that

1. there exists a diagonal matrix Λ= Diag(λ1, . . . ,λK ) with non-degenerate eigenvalues8 such that∥∥ 1
n L⊤L −Λ

∥∥→ 0

2. the entries of V are delocalized (i.e., not sparse) in the sense that lim
p,n→+∞ max

1ÉiÉn
1ÉkÉK

p
nV 2

i ,k = 0

and, denoting v1, . . . , vK the columns of V sorted in decreasing order of the corresponding singular
value of P , we can describe the limiting behavior of spike eigenvalues and eigenvectors.

Theorem 2.34 (Spike behavior). For all k ∈ [K ],

λk (K )
a.s.−−−−−−→

p,n→+∞
(ℓk + c)(ℓk +1)

ℓk c
and 〈vk ,uk (K )〉2 a.s.−−−−−−→

p,n→+∞ 1− ℓk + c

ℓk (ℓk +1)

where ℓk = max(
p

c,λk (Λ)).

Proof. See Section 2.3.

Remark 2.35 (Non-trivial regime). The assumption 1
n L⊤L →Λ implicitly states that the spectral norm

of 1p
p P is bounded. This is an important point because it precisely places us in the non-trivial regime

where the problem is neither too easy (the signal can be perfectly recovered) nor too hard (it is impos-
sible to reconstruct the signal), which is just the interesting regime in practice. Indeed, Theorem 2.34
exhibits a phase transition between impossible and possible reconstruction of P . The “too hard” and
“too easy” regimes correspond to λk (Λ) → 0 and λk (Λ) →+∞ respectively.

These results are illustrated in Chapter 3 (see Figure 3.1 and Figure 3.2).

On the i.i.d. Gaussian Noise Assumption

One could easily criticize our choice of Gaussian noise by saying that this is not a realistic assump-
tion because Gaussian noise is rarely observed in practice and therefore the results found with the
Gaussian method are too specific to be really useful. Still, there are several reasons which make us
confident with our assumption and make us believe that the results derived with it are, in fact, very
general.

Firstly — and this is probably the most important point —, following the lines of Jaynes (2003),
the Gaussian probability assignment is not an assumption on the real physical phenomenon behind
our observation but it is a description of our state of knowledge about the noise. Given that the only
prior information we have about the noise is its mean and variance (and nothing else), the Gaussian
distribution is the only maximizer of Shannon’s entropy — which measures our “level of uncertainty”
— under the constraint that the mean and variance are known. Moreover, the fact that the entries of N
are independent is not an assumption that no correlation exists in the data but it is simply our way to

8That is, k ̸= k ′ =⇒ λk ̸=λk′ . This assumption is not needed but often verified in practice and simplifies the result.

41



Chapter 2. Technical Tools

recognize that we have no prior information about such correlation. There may well be a correlation
but, without any prior knowledge about it, an i.i.d. noise is the most reasonable choice of model. It is
the only way to honestly acknowledge our ignorance.

Thus, by saying that the entries of N are i.i.d. N (0,1) random variables, we are only making an
assumption on the mean and the variance of the noise. While the zero-mean assumption on the noise
is fairly acceptable (otherwise there is a signal that our model does not take into account), there is,
however, no reason that the variance be 1 and we should instead assume N (0,σ2) entries, that is,
X = P +σN . But then σ becomes a parameter of our model (recall Remark 1.3) and we could as well
consider 1

σX = 1
σP +N . Therefore we are back to a model with N (0,1) noise where the “strength” of

the perturbation s2
1(P )/σ2 rightfully appears as the signal-to-noise ratio.

Although this is not the focus of this thesis, there may be situations where further prior knowledge
leads us to consider different distributions for the noise. In such cases, the results of the Gaussian
method can be generalized to i.i.d. entries up to a control on the moments of the distribution thanks
to an “interpolation trick” (Lytova and Pastur, 2009, Corollary 3.1), as it is done, e.g., in Pastur and
Shcherbina (2011, Theorems 18.4.2 and 19.2.1) and Merlevède et al. (2015); Banna et al. (2015). In the
non-i.i.d. setting, the works of Benaych-Georges and Nadakuditi (2011, 2012) show very general results
with the milder assumption that the noise is rotationally invariant. Similar spectral behaviors are
observed under the very broad assumption that the noise is concentrated (Talagrand, 1995; Ledoux,
2001). More general results can thus be proved relying on measure concentration tools, such as those
developed by El Karoui (2009); Louart and Couillet (2021). We should also mention that, in a machine
learning context, concentrated random vectors encompass a large set of very realistic data (Seddik
et al., 2020).

2.3 A Primer on the “Gaussian Method”

In order to illustrate concretely how the tools presented in Section 2.1 can be used to analyze a signal-
plus-noise matrix model, we prove in this section the results of Theorem 2.33 and Theorem 2.34 on
the model X = P +N ∈ Rp×n with N having i.i.d. N (0,1) entries and P = LV ⊤ as described in Section
2.2.3.

The proof is performed in three steps.

1. Firstly, we show the concentration around its expectation of the resolvent Q(z) = (K − zIn)−1,
where K = 1

p X ⊤X is the Gram kernel matrix, and we find an equation giving access to the
asymptotic behavior of E[Q(z)]. To achieve this, we prove that E[Q(z)] is a deterministic equiva-
lent of Q(z) with the Poincaré-Nash inequality (Lemma 2.19) and Lemma 2.20. Then, we rely on
Stein’s lemma (Lemma 2.18) to exhibit a simple equation for E[Q(z)].

2. The previous equation allows us to characterize the limiting spectral distribution of K through
the deterministic quantity E[ 1

n TrQ(z)] as p,n →+∞ (Proposition 2.6). At this point we obtain

the result of Theorem 2.33. We also show that no eigenvalue of 1
p N⊤N (the model without sig-

nal) stays outside the support of the limiting spectral distribution almost surely as p,n →+∞
thanks to an expansion of E[ 1

n TrQ(z)] and the Helffer-Sjöstrand formula (Proposition 2.12).

3. Finally, we exhibit the asymptotic positions of the spike eigenvalues in the spectrum of K by
studying the singular points of z 7→ (K − zIn)−1 outside the limiting support and we formulate a
simple deterministic equivalent Q̄(z) of the resolvent. With Cauchy’s integral formula (Proposi-
tion 2.15) and residue calculus (Proposition 2.16), the alignments between the spike eigenvec-
tors of K and the columns of V can be characterized as well. This results in Theorem 2.34.

42



2.3. A Primer on the “Gaussian Method”

2.3.1 Asymptotic Behavior of the Resolvent

Let Q : z ∈C\ SpK 7→ (K − zIn)−1 ∈Cn×n be the resolvent of K
def= 1

p X ⊤X . In order to ease the notation
we drop the subscript K and we will also often drop the dependence in z so we simply write Q instead
of QK (z). In Sections 2.3.1 and 2.3.2, we consider z ∈C \R, i.e., ℑz ̸= 0. Moreover, we use the notation
un(z) = Oz (vn) if there exist two polynomials P,Q with nonnegative coefficients and an integer n0

such that |un(z)| É P (|z|)
|ℑz|Q(|ℑz|) |vn | for all z ∈C \R as soon as n Ê n0.. This allows the control of possible

divergences of resolvents and Stieltjes transforms near the real axis.

Preliminaries

As derivatives of Q with respect to the entries of N will appear regularly in our computations, we
derive their expression here once and for all. Since Q−1Q = In , we have ∂Q = −Q(∂Q−1)Q and, since
Q−1 = K + zIn , this gives

∂Qa,b

∂Nc,d
=−

n∑
e=1

p∑
f =1

Qa,e
∂Ke, f

∂Nc,d
Q f ,b

=− 1

p

n∑
e=1

p∑
f =1

p∑
g=1

Qa,e

(
∂Xg ,e

∂Nc,d
Xg , f +Xg ,e

∂Xg , f

∂Nc,d

)
Q f ,b

=− 1

p

n∑
e=1

p∑
f =1

p∑
g=1

Qa,e
(
δg ,cδe,d Xg , f +Xg ,eδg ,cδ f ,d

)
Q f ,b

=− 1

p

p∑
f =1

Qa,d Xc, f Q f ,b −
1

p

n∑
e=1

Qa,e Xc,eQd ,b

∂Qa,b

∂Nc,d
=− 1

p

[
Qa,d [XQ]c,b +Qd ,b[XQ]c,a

]
. (2.3)

Concentration around E[Q]

It is more convenient to show first that E[Q] is a deterministic equivalent of Q , so that we can rely on
this afterwards.

Firstly, for two deterministic vectors a,b ∈ Rn with bounded norm we show the almost sure con-
vergence to 0 of the quadratic form a⊤(Q −E[Q])b. In order to apply Lemma 2.20, we need to find an
integer κÊ 2 such that E[|a⊤(Q −E[Q])b|κ] =Oz (n−2) as p,n →+∞. To that end, we use the Poincaré-
Nash inequality (Lemma 2.19). We start with κ= 2.

E
[∣∣a⊤(Q −E[Q])b

∣∣2
]
= Var

(
a⊤Qb

)É n∑
i=1

n∑
j=1
E

[∣∣∣∣∂a⊤Qb

∂Ni , j

∣∣∣∣2]
.

The derivatives can be computed using Equation (2.3),

∂a⊤Qb

∂Ni , j
=

n∑
k=1

n∑
l=1

ak
∂Qk,l

∂Ni , j
bl

=− 1

p

n∑
k=1

n∑
l=1

ak
[
Qk, j [XQ]i ,l +Q j ,l [XQ]i ,k

]
bl

=− 1

p

n∑
k=1

n∑
l=1

[
[XQ]i ,k ak bl Ql , j + [XQ]i ,l bl akQk, j

]
since Q j ,l =Ql , j
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=− 1

p

[
XQ

(
ab⊤+ba⊤)

Q
]

i , j .

Thus, using the fact that |a +b|2 É 2(|a|2 +|b|2), we have,

n∑
i=1

n∑
j=1
E

[∣∣∣∣∂a⊤Qb

∂Ni , j

∣∣∣∣2]
É 2

p2

n∑
i=1

n∑
j=1
E

[∣∣∣[XQab⊤Q
]

i , j

∣∣∣2
+

∣∣∣[XQba⊤Q
]

i , j

∣∣∣2
]

= 2

p2 E
[∥∥XQab⊤Q

∥∥2
F +

∥∥XQba⊤Q
∥∥2

F

]
É 4

p2
∥a∥2∥b∥2E

[∥Q∥4∥X ∥2]
where the last inequality is obtained using the property ∥AB∥F É ∥A∥∥B∥F, the sub-multiplicative
property ∥AB∥ É ∥A∥∥B∥ and the fact that ∥ab⊤∥F = ∥a∥∥b∥. Since ∥a∥∥b∥ =O (1) from our assump-
tions, ∥Q∥ É |ℑz|−1 from Proposition 2.2 and 1p

p ∥X ∥ = O (1) in the non-trivial regime9 , we find that

E[|a⊤(Q −E[Q])b|2] = Oz (n−1). Unfortunately, this is not enough to apply Lemma 2.20 so we need to
evaluate the moment of order κ= 4.

E
[∣∣a⊤(Q −E[Q])b

∣∣4
]
= Var

((
a⊤(Q −E[Q])b

)2
)
+

∣∣∣E[(a⊤(Q −E[Q])b
)2

]∣∣∣2
.

The rightmost term is upper bounded by E[|a⊤(Q − E[Q])b|2]2 = Oz (n−2) from Jensen’s inequality
(Le Gall, 2022, Theorem 4.3). We use again the Poincaré-Nash inequality (Lemma 2.19) on the vari-
ance of (a⊤(Q −E[Q])b)2.

Var
((

a⊤(Q −E[Q])b
)2

)
É

n∑
i=1

n∑
j=1
E

[∣∣∣∣2(
a⊤(Q −E[Q])b

)∂a⊤Qb

∂Ni , j

∣∣∣∣2]
.

Similarly, we find that

Var
((

a⊤(Q −E[Q])b
)2

)
É

n∑
i=1

n∑
j=1
E

[∣∣∣∣− 2

p

(
a⊤(Q −E[Q])b

)[
XQ

(
ab⊤+ba⊤)

Q
]

i , j

∣∣∣∣2]

É 8

p2

n∑
i=1

n∑
j=1
E

[∣∣a⊤(Q −E[Q])b
∣∣2

(∣∣∣[XQab⊤Q
]

i , j

∣∣∣2
+

∣∣∣[XQba⊤Q
]

i , j

∣∣∣2
)]

É 16

p2
∥a∥2∥b∥2E

[∣∣a⊤(Q −E[Q])b
∣∣2∥Q∥4∥X ∥2

]
where the last inequality is obtained similarly to the case κ = 2. Then, with the Cauchy-Schwarz in-
equality,

Var
((

a⊤(Q −E[Q])b
)2

)2
É

(
16

p2

)2

∥a∥4∥b∥4E
[∥Q∥8∥X ∥4]︸ ︷︷ ︸

=Oz (n−2)

(
Var

((
a⊤(Q −E[Q])b

)2
)
+Oz (n−2)

)

which shows that Var((a⊤(Q −E[Q])b)2) =Oz (n−2). Therefore a⊤(Q −E[Q])b → 0 almost surely for all
z ∈C\R as p,n →+∞ by Lemma 2.20.

9We have ∥X ∥p
p É ∥P∥p

p + ∥N∥p
p with ∥P∥p

p = O (1) by assumption (see Remark 2.35) and ∥N∥p
p = O (1) almost surely as proven by

Geman (1980) or as a particular case of a general concentration result proven independently in Chapter 5 (Lemma 5.10). Note
that we can avoid the necessity of this result by writing 1

p2 ∥XQab⊤Q∥2
F = 1

p Tr(Qba⊤Q(zQ+In )ab⊤Q) since ( 1
p X ⊤X −zIn )Q =

In . Thus we have an upper bound depending only on ∥a∥, ∥b∥ and ∥Q∥.
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Secondly, given a deterministic matrix A ∈ Rn×n of bounded norm, we show the almost sure con-
vergence to 0 of the normalized trace 1

n Tr AQ . Once again, this is performed with the Poincaré-Nash
inequality (Lemma 2.19).

E

[∣∣∣∣ 1

n
Tr A(Q −E[Q])

∣∣∣∣2]
= Var

(
1

n
Tr AQ

)
É 1

n2

n∑
i=1

n∑
j=1
E

[∣∣∣∣∂Tr AQ

∂Ni , j

∣∣∣∣2]
.

With Equation (2.3), we have,

∂Tr AQ

∂Ni , j
=

n∑
k=1

n∑
l=1

Ak,l
∂Ql ,k

∂Ni , j

=− 1

p

n∑
k=1

n∑
l=1

Ak,l
[
Ql , j [XQ]i ,k +Q j ,k [XQ]i ,l

]
=− 1

p

[
XQ AQ +XQ A⊤Q

]
i , j .

Hence,

1

n2

n∑
i=1

n∑
j=1
E

[∣∣∣∣∂Tr AQ

∂Ni , j

∣∣∣∣2]
É 2

n2p2

n∑
i=1

n∑
j=1
E

[∣∣[XQ AQ]i , j

∣∣2 +
∣∣∣[XQ A⊤Q

]
i , j

∣∣∣2
]

É 4

n2p2
∥A∥2

FE
[∥Q∥4∥X ∥2]É 4

np2
∥A∥2E

[∥Q∥4∥X ∥2]=Oz (n−2)

and, with Lemma 2.20, we find that 1
n Tr A(Q −E[Q]) → 0 almost surely for all z ∈C\R as p,n →+∞.

Remark 2.36. In passing, we have shown that Var(a⊤Qb) =Oz (n−1) and Var( 1
n Tr AQ) =Oz (n−2).

Derivations with Stein’s lemma

From the observation that Q−1Q = In , i.e., 1
p X ⊤XQ − zQ = In with X = P +N , our starting point is the

following equation,
1

p
P⊤XQ + 1

p
N⊤XQ − zQ = In . (2.4)

Using Stein’s lemma (Lemma 2.18) and Equation (2.3) for the derivatives of Q , we seek expressions for
the expectations of 1

p P⊤XQ and 1
p N⊤XQ .

Let us start with 1
p N⊤XQ .

1

p
E
[

N⊤XQ
]

i , j =
1

p

p∑
k=1

n∑
l=1
E
[
Nk,i Xk,l Ql , j

]
= 1

p

p∑
k=1

n∑
l=1
E

[
∂Xk,l

∂Nk,i
Ql , j +Xk,l

∂Ql , j

∂Nk,i

]
= 1

p

p∑
k=1

n∑
l=1
E
[
δl ,i Ql , j

]− 1

p2

p∑
k=1

n∑
l=1
E
[

Xk,l
[
Ql ,i [XQ]k, j +Qi , j [XQ]k,l

]]
= E[Q]i , j −

1

p2 E
[
Q X ⊤XQ +Q Tr

(
X ⊤XQ

)]
i , j .

Here, recall that, from Q−1Q = In , we have 1
p X ⊤XQ = zQ + In . Hence,

1

p
E
[

N⊤XQ
]= E[Q − 1

p
Q(zQ + In)− 1

p
Q Tr(zQ + In)

]
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= E
[(

1− 1

p
− n

p

)
Q − z

(
1

p
Q2 + 1

p
Q TrQ

)]
.

Thus, the expectation of Equation (2.4) becomes

1

p
E
[
P⊤XQ

]−E[zc−1mn(z)Q − (
1− c−1 − z

)
Q

]+ 1

p
E
[
Q + zQ2]= In (2.5)

where mn(z)
def= 1

n TrQ(z) is the Stieltjes transform of the spectral distribution of K .

Then, we consider 1
p P⊤XQ using, again, Stein’s lemma and Equation (2.3).

1

p
E
[
P⊤XQ

]
i , j =

1

p
E
[
P⊤PQ

]
i , j +

1

p

p∑
k=1

n∑
l=1
E
[
Pk,i Nk,l Ql , j

]
= 1

p
E
[
P⊤PQ

]
i , j +

1

p

p∑
k=1

n∑
l=1
E

[
Pk,i

∂Ql , j

∂Nk,l

]
= 1

p
E
[
P⊤PQ

]
i , j −

1

p2

p∑
k=1

n∑
l=1
E
[
Pk,i

[
Ql ,l [XQ]k, j +Ql , j [XQ]k,l

]]
= E

[
1

p
P⊤PQ − 1

p2 P⊤XQ TrQ − 1

p2 P⊤XQ2
]

i , j
.

Hence 1
p E[(1+c−1mn(z))P⊤XQ] = 1

p E[P⊤PQ]− 1
p2 E[P⊤XQ2] and, recalling that |mn(z)−E[mn(z)]|→ 0

almost surely for all z ∈ C \R, we have ∥ 1
p (1+ c−1E[mn(z)])E[P⊤XQ]− 1

p E[P⊤PQ]∥→ 0 as p,n →+∞.
Moreover, since E[mn] is the Stieltjes transform of a probability distribution on [0,+∞[ (Corollary 2.9
and Proposition 2.7), we can see that 1

|z(1+c−1E[mn (z)])| É
1

|ℑ[z+c−1zE[mn (z)]]| É
1

|ℑz| thus 1
|1+c−1E[mn (z)]| É

|z|
|ℑz|

and ∥∥∥∥ 1

p
E
[
P⊤XQ

]− 1

1+ c−1E[mn(z)]

1

p
P⊤PE[Q]

∥∥∥∥−−−−−−→
p,n→+∞ 0. (2.6)

2.3.2 Limiting Spectral Distribution

Expansion of E[mn(z)]

In order to study the limiting spectral distribution (LSD) of K , we consider the simpler setting where
P = 0p×n . Indeed, since P is a deterministic low-rank perturbation, its addition does not change the
LSD: denoting Q0 the resolvent of 1

p N⊤N , the resolvent identity (Proposition 2.21) yields

1

n
TrQ0 −

1

n
TrQ = 1

np
Tr

[
Q0

(
P⊤P +P⊤N +N P⊤)

Q
]=Oz (n−1) almost surely.

Then, applying 1
n Tr to Equation (2.5), we find that E[mn(z)] satisfies

zc−1E[mn(z)]2 − (
1− c−1 − z

)
E[mn(z)]+1 =− 1

p
E[mn(z)]− z

p
E
[
m′

n(z)
]+Oz (n−2)

where we have used the fact that 1
n TrQ2 = m′

n(z) and E[m2
n(z)] = E[mn(z)]2 +Oz (n−2) (recall Remark

2.36). We know that the Stieltjes transform mMP of the Marčenko-Pastur distribution is characterized
by

zc−1m2
MP(z)− (

1− c−1 − z
)
mMP(z)+1 = 0. (2.7)
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Subtracting the last two equations and factorizing E[mn(z)]−mMP(z) yields

(E[mn(z)]−mMP(z))
(
zc−1(E[mn(z)]+mMP(z))−

(
1− c−1 − z

))=− 1

p
E[mn(z)]− z

p
E
[
m′

n(z)
]+Oz (n−2).

Hence, E[mn(z)]−mMP(z) = 1
p gn(z)E[mn(z)+ zm′

n(z)]+Oz (n−2) where

gn : z 7→ −1

z
(
1+ c−1E[mn(z)]+ c−1mMP(z)− 1−c−1

z

)
satisfies |gn(z)| É |ℑz|−1 because ℑz and ℑ[z(c−1E[mn(z)]+ c−1mMP(z)− 1−c−1

z )] have the same sign
since E[mn] and mMP are Stieltjes transforms of probability distributions on [0,+∞[ (see Corollary 2.9
and Proposition 2.7).

Lemma 2.37. E[mn(z)] = mMP(z)+ 1
p h(z)+Oz (n−2) with h(z) = −zmMP(z)

(
c−1mMP(z)− 1−c−1

z

)
z2

(
1+2c−1mMP(z)− 1−c−1

z

)2 .

Proof. Our goal is to show that 1
p gn(z)E[mn(z)+ zm′

n(z)] = 1
p h(z)+Oz (n−2). Since |gn(z)|, |mn(z)| É

|ℑz|−1 and |m′
n(z)| É |ℑz|−2, we have 1

p gn(z)E[mn(z)+ zm′
n(z)] = Oz (n−1) and E[mn(z)] = mMP(z)+

Oz (n−1). Moreover, we have the following results, which we prove below.

gn(z) = −1

z
(
1+2c−1mMP(z)− 1−c−1

z

) +Oz (n−1), (2.8)

E
[
m′

n(z)
]= −(

1+ c−1mMP(z)
)
mMP(z)

z
(
1+2c−1mMP(z)− 1−c−1

z

) +Oz (n−1). (2.9)

Then, we find the stated result by observing that |z(1+ 2c−1mMP(z)− 1−c−1

z )|−1 É |ℑz|−1 because ℑz

and ℑ[z(2c−1mMP(z)− 1−c−1

z )] have the same sign since mMP is the Stieltjes transform of a probability
distribution on [0,+∞[ (Proposition 2.7). Indeed,

gn(z)E
[
mn(z)+ zm′

n(z)
]=− mMP(z)

z
(
1+2c−1mMP(z)− 1−c−1

z

) + z
(
1+ c−1mMP(z)

)
mMP(z)

z2
(
1+2c−1mMP(z)− 1−c−1

z

)2 +Oz (n−1)

= h(z)+Oz (n−1).

Proof of Equation (2.8). Since E[mn(z)] = mMP(z)+Oz (n−1), we have

gn(z) = −1

z
(
1+2c−1mMP(z)− 1−c−1

z

) + Oz (n−1)

z
(
1+2c−1mMP(z)− 1−c−1

z

)2

and the modulus of −1

z
(
1+2c−1mMP(z)− 1−c−1

z

) is bounded by |ℑz|−1 therefore the last term is Oz (n−1).

Proof of Equation (2.9). Since m′
n = 1

n TrQ2, using the Poincaré-Nash inequality (Lemma 2.19) we
find that

Var(m′
n(z)) É 16

np2 E
[∥X ∥2∥Q∥6]=Oz (n−2).
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Taking 1
n Tr of Equation (2.5) with P = 0p×n yields

E

[
zc−1m2

n(z)− (
1− c−1 − z

)
mn(z)+1+ 1

p
mn(z)+ z

p
m′

n(z)

]
= 0.

In order to differentiate this expression, we must swap ∂
∂z and E, which is possible because z 7→

|zc−1m2
n(z)−(1−c−1−z)mn(z)+1+ 1

p mn(z)+ z
p m′

n(z)| can be upper bounded on every compact subset
of C\R. Hence, we find that, for all z ∈C\R,

E

[
c−1m2

n(z)+2zc−1mn(z)m′
n(z)+mn(z)− (

1− c−1 − z
)
m′

n(z)+ 2

p
m′

n(z)+ z

p
m′′

n(z)

]
= 0.

Then, we use the relations E[ 2
p m′

n(z)+ z
p m′′

n(z)] = Oz (n−1), E[m2
n(z)] = E[mn(z)]2 +Oz (n−2) as well

as E[mn(z)m′
n(z)] = E[mn(z)]E[m′

n(z)]+Oz (n−2) — from the Cauchy-Schwarz inequality with the fact
that Var(mn(z)) and Var(m′

n(z)) are Oz (n−2) — and our previous equation becomes(
2zc−1E[mn(z)]−

(
1− c−1 − z

))
E
[
m′

n(z)
]=−(

1+ c−1E[mn(z)]
)
E[mn(z)]+Oz (n−1).

Finally, noticing that |z(1+2c−1E[mn(z)]− 1−c−1

z )| É |ℑz|−1 because ℑz and ℑ[z(2c−1E[mn(z)]− 1−c−1

z )]
have the same sign since E[mn] is the Stieltjes transform of a probability distribution on [0,+∞[ (Corol-

lary 2.9 and Proposition 2.7), we have E[m′
n(z)] = −(1+c−1E[mn (z)])E[mn (z)]

z
(
1+2c−1E[mn (z)]− 1−c−1

z

) +Oz (n−1) and we just need to

recall that E[mn(z)] = mMP(z)+Oz (n−1) to conclude.

Confinement of the Spectrum

We have just found the following expansion: E[mn(z)] = mMP(z)+ 1
p h(z)+Oz (n−2). Note that this

shows that the limiting spectral distribution of 1
p N⊤N (and therefore that of 1

p X ⊤X ) is the Marčenko-

Pastur distribution with parameter c−1. We will now use this expansion to prove that, almost surely,
no eigenvalue of 1

p N⊤N stays outside the support of the Marčenko-Pastur distribution as p,n →+∞.
That is, for all ε> 0, there exists an integer n0 such that maxλ∈Sp 1

p N⊤N Dist(λ,SuppµMP) É ε as soon as

n Ê n0.
Let ε > 0 and Sε = {x ∈ R | Dist(x,SuppµMP) < ε}. Let ϕ : R→ [0,1] be an infinitely differentiable

function which equals 1 on SuppµMP and 0 on R \ Sε. We also define ψ= 1−ϕ. Then, we must show
that Trψ( 1

p N⊤N ) = ∑
λ∈Sp 1

p N⊤N ψ(λ) → 0 almost surely as p,n →+∞. This implies the confinement

of the spectrum (otherwise, we would have
∑
λ∈Sp 1

p N⊤N ψ(λ) Ê 1).

From the Helffer-Sjöstrand formula (Proposition 2.12), we have

E

[
1

n
Trϕ

(
1

p
N⊤N

)]
= 2

π
ℜ

∫
C+

∂Φq [ϕ]

∂z̄
(z)E[mn(z)] dz

= 2

π
ℜ

∫
C+

∂Φq [ϕ]

∂z̄
(z)mMP(z) dz + 1

p

2

π
ℜ

∫
C+

∂Φq [ϕ]

∂z̄
(z)h(z) dz + 2

π
ℜ

∫
C+

∂Φq [ϕ]

∂z̄
(z)×Oz (n−2) dz.

The first integral is
∫
Rϕ dµMP = 1 (from Proposition 2.12 and the fact that ϕ is constant equal to 1 on

SuppµMP) and we can chose q large enough so that (iℑz)q in the expression of
∂Φq [ϕ]
∂z̄ compensates for

the divergence of the Oz (n−2) in the last integral (see Remark 2.13), which is therefore a O (n−2). The
main difficulty lies in the evaluation of the second integral. With an integration by parts, we find

2

π
ℜ

∫
C+

∂Φq [ϕ]

∂z̄
(z)h(z) dz = 2

π
ℜ

[
1

2

∫ +∞

0

(∫ +∞

−∞

∂Φq [ϕ]

∂x
(x + iy)h(x + iy) dx

)
dy

+ i

2

∫ +∞

−∞

(∫ +∞

0

∂Φq [ϕ]

∂y
(x + iy)h(x + iy) dy

)
dx

]
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= 2

π
ℜ

[−i

2

∫
R

lim
y↓0

{
Φq [ϕ](x + iy)h(x + iy)

}
dx −

∫
C+
Φq [ϕ](z)

∂h

∂z̄
(z) dz

]
.

Since h is analytic on C+ (as a product of analytic functions), we have ∂h/∂z̄ = 0 from the Cauchy-
Riemann equations. Moreover, if x ∈R\ SuppµMP, we see, from the definition of h that limy↓0ℑ[h(x +
iy)] = 0. Therefore, using the fact that limy↓0Φq [ϕ](x + iy) =ϕ(x) = 1 if x ∈ SuppµMP and the relation
ℜ[−iz] =ℑz, we have

2

π
ℜ

∫
C+

∂Φq [ϕ]

∂z̄
(z)h(z) dz = lim

y↓0

1

π

∫
SuppµMP

ℑ[h(x + iy)] dx.

Now, we use Lemma 2.14 to evaluate this integral: h is analytic on C\ SuppµMP, h(z) → 0 as |z| →+∞
and h(z̄) = h(z). Furthermore, since z 7→ c−1mMP(z)− 1−c−1

z and z 7→ −1

z
(
1+2c−1mMP(z)− 1−c−1

z

) are two

Stieltjes transforms of probability distributions on SuppµMP, we have

|h(z)| É |z|
Dist(z,SuppµMP)4 É E++Dist(z,SuppµMP)

Dist(z,SuppµMP)4 É (E++1)max
(
Dist(z,SuppµMP)−4,1

)
where E+ is the right-edge of the Marčenko-Pastur distribution. As a consequence,

2

π
ℜ

∫
C+

∂Φq [ϕ]

∂z̄
(z)h(z) dz = lim

y→+∞−iyh(iy) = 0.

Thus, we have E[ 1
n Trϕ( 1

p N⊤N )] = 1+O (n−2) and therefore E[Trψ( 1
p N⊤N )] =O (n−1).

In order to conclude on the almost sure convergence of Trψ( 1
p N⊤N ) to 0, we just need to show

that Var(Trψ( 1
p N⊤N )) =O (n−2) and apply Lemma 2.20. As usual, this is performed with the Poincaré-

Nash inequality (Lemma 2.19).

Var

(
Trψ

(
1

p
N⊤N

))
= Var

(
Trϕ

(
1

p
N⊤N

))
É

p∑
i=1

n∑
j=1
E


∣∣∣∣∣∣
∂Trϕ

(
1
p N⊤N

)
∂Ni , j

∣∣∣∣∣∣
2

=
p∑

i=1

n∑
j=1
E

[∣∣∣∣Tr

(
ϕ′

(
1

p
N⊤N

)
∂

∂Ni , j

[
1

p
N⊤N

])∣∣∣∣2]

= 1

p2

p∑
i=1

n∑
j=1
E

[∣∣∣∣Tr

(
ϕ′

(
1

p
N⊤N

)[
e(n)

j e(p)⊤
i N +N⊤e(p)

i e(n)⊤
j

])∣∣∣∣2]

= 1

p2

p∑
i=1

n∑
j=1
E

[∣∣∣∣∣
[

2Nϕ′
(

1

p
N⊤N

)]
i , j

∣∣∣∣∣
2]

= 4

p2 E

[
Tr

(
ϕ′

(
1

p
N⊤N

)
N⊤Nϕ′

(
1

p
N⊤N

))]
= 4

p
E

[
Tru

(
1

p
N⊤N

)]
where u : x 7→ x[ϕ′(x)]2 is an infinitely differentiable function with compact support which equals 0
on SuppµMP. Hence, applying similarly the Helffer-Sjöstrand formula (Proposition 2.12), we have

4

p
E

[
Tru

(
1

p
N⊤N

)]
= 8c−1

π
ℜ

∫
C+

∂Φq [u]

∂z̄
(z)E[mn(z)] dz =O (n−2)

for q chosen sufficiently large.
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Intermediate Conclusion

The limiting spectral distribution of 1
p X ⊤X is the Marčenko-Pastur distribution with parameter c−1

and, almost surely, no eigenvalue of 1
p N⊤N stays outside the support of this limiting spectral distri-

bution as p,n →+∞.

2.3.3 Spike Behavior

We are now interested in the “spike” eigenvalues and eigenvectors. That is, the eigenvalues of 1
p X ⊤X

(and their corresponding eigenvectors) staying outside SuppµMP and which are due to the presence
of a signal P = LV ⊤.

Isotropic Marčenko-Pastur

As preliminaries, we must show a useful result for the upcoming analysis — the almost sure conver-
gence a⊤Q0b −mMP(z)〈a,b〉 → 0 as p,n →+∞ for all (sequences of) deterministic vectors a,b ∈ Rn

with bounded norm and z ∈ C \ SuppµMP. Recall that Q0 is the resolvent of 1
p N⊤N therefore, from

the confinement of the spectrum of the latter, if x ∈ R \ SuppµMP, Q0(x) is properly defined for p,n
sufficiently large. Given the concentration of the resolvent proven in Section 2.3.1, we only need to
show that a⊤E[Q0]b −mMP(z)〈a,b〉→ 0.

From Equation (2.5), we have

−zc−1E
[
mn(z)a⊤Q0b

]+ (
1− c−1 − z

)
a⊤E[Q0]b +Oz (n−1) = 〈a,b〉.

Then, since Cov(mn(z), a⊤Q0b) =Oz (n−3/2) and E[mn(z)] = mMP(z)+Oz (n−1), this simplifies into

−(
zc−1mMP(z)− (

1− c−1 − z
))

a⊤E[Q0]b = 〈a,b〉+Oz (n−1).

Finally, notice that −(zc−1mMP(z)− (1−c−1 − z)) = 1
mMP(z) , hence a⊤E[Q0]b = mMP(z)〈a,b〉+Oz (n−1).

Isolated Eigenvalues

An eigenvalue of K = 1
p X ⊤X is isolated if it stays outside SuppµMP as p,n → +∞. Thus, let us seek

ξ ∈ R \ SuppµMP such that det(K −ξIn) = 0. After developing K in terms of P and N , we find that ξ is
characterized by

det

(
In + 1

p

[
P⊤P +P⊤N +N⊤P

]
Q0(ξ)

)
det

(
1

p
N⊤N −ξIn

)
= 0

and, from the confinement of the spectrum of 1
p N⊤N , we can assume p,n sufficiently large so that

det( 1
p N⊤N −ξIn) ̸= 0. Using the decomposition P = LV ⊤, the sum of matrix products P⊤P +P⊤N +

N⊤P can be written as
[p

nV
p

nV 1p
n

N⊤L
] 1p

n
L⊤LV ⊤

1p
n

L⊤N
p

nV ⊤

 and we can use Sylvester’s identity (Proposition

2.22) to turn the n ×n determinant into a 3K ×3K determinant:

det(I3K +M) = 0 with M = 1

p

L⊤LV ⊤Q0(ξ)V L⊤LV ⊤Q0(ξ)V 1
n L⊤LV ⊤Q0(ξ)N⊤L

L⊤NQ0(ξ)V L⊤NQ0(ξ)V 1
n L⊤NQ0(ξ)N⊤L

nV ⊤Q0(ξ)V nV ⊤Q0(ξ)V V ⊤Q0(ξ)N⊤L

.

We have V ⊤Q0(ξ)V → mMP(ξ)IK almost surely as p,n →+∞ (from the convergence of bilinear forms
proven in the previous paragraph and the fact that V ⊤V = IK with K finite) therefore the blocks (3,1)

50



2.3. A Primer on the “Gaussian Method”

and (3,2) of M converge to c−1mMP(ξ)IK and the blocks (1,1) and (1,2) converge to c−1mMP(ξ)Λ (recall
that 1

n L⊤L →Λ). The block (2,3) can be handled with the co-resolvent Q̃0(ξ) = ( 1
p N N⊤−ξIp ):

1

p

1

n
L⊤NQ0(ξ)N⊤L = 1

n
L⊤

(
1

p
N N⊤Q̃0(ξ)

)
L = 1

n
L⊤(

ξQ̃0(ξ)+ Ip
)
L

a.s.−−−−−−→
p,n→+∞ (ξm̃MP(ξ)+1)Λ

where m̃MP(ξ) = c−1mMP(ξ)− 1−c−1

ξ hence the limit is equal to c−1(ξmMP(ξ)+ 1)Λ. The blocks (1,3),
(2,1), (2,2) and (3,3) of M vanish almost surely as p,n →+∞ as per the following lemma.

Lemma 2.38. For all bounded (sequences of) vectors a ∈Rp , b ∈Rn , 1p
p |a⊤NQ0(ξ)b|→ 0 almost surely

as p,n →+∞.

Proof. Let N =GΣH⊤ be the singular value decomposition of N withΣ= Diag(s1(N ), . . . , smin(p,n)(N )).
Then NQ0(ξ) = GΣ( 1

pΣ
2 −ξImin(p,n))−1H⊤. Hence, 1p

p |a⊤NQ0(ξ)b| É 1p
p ∥NQ0(ξ)∥|a⊤G H⊤b| where

1p
p ∥NQ0(ξ)∥ = O (1) almost surely so our goal is to show that |a⊤G H⊤b| → 0 almost surely. Ac-

cording to Chikuse (2003, Theorem 2.2.1), G (resp. H) follows a uniform distribution on the Stiefel
manifold Vmin(p,n)(Rp ) (resp. Vmin(p,n)(Rn)), that is, the set of orthonormal min(p,n)-frames in Rp

(resp. Rn). Therefore, a⊤G H⊤b = a⊤O⊤
a OaG H⊤O⊤

b Ob b = ∥a∥∥b∥e(p)⊤
1 OaG H⊤O⊤

b e(n)
1 for two well-

chosen orthogonal matrices Oa ∈ Op (R), Ob ∈ On(R), and this quantity is identically distributed to

∥a∥∥b∥e(p)⊤
1 G H⊤e(n)

1 by the properties of the uniform distribution on the Stiefel manifold (Chikuse,
2003, Theorem 2.2.1). Moreover, if n É p, then Vmin(p,n)(Rn) = On(R) thus G H⊤ is uniformly dis-

tributed on Vn(Rp ) so G H⊤e(n)
1 is uniformly distributed on V1(Rp ) = Sp−1 and (e(p)⊤

1 G H⊤e(n)
1 )2 fol-

lows a beta distribution10 with parameters 1
2 , p−1

2 . Consequently, we have E[(e(p)⊤
1 G H⊤e(n)

1 )2] = 1
p

and Var((e(p)⊤
1 G H⊤e(n)

1 )2) = 2(p−1)
p2(p+2)

, which shows, by Lemma 2.20, that (e(p)⊤
1 G H⊤e(n)

1 )2 → 0 almost

surely and therefore |a⊤G H⊤b|→ 0 almost surely. If p É n, then with the same reasoning we find that

(e(n)⊤
1 HG⊤e(p)

1 )2 follows a beta distribution with parameters 1
2 , n−1

2 hence the same result.

Eventually, from the continuity of A 7→ det A in the entries of A, we have asymptotically

det

IK + c−1mMP(ξ)Λ c−1mMP(ξ)Λ 0K×K

0K×K IK c−1(ξmMP(ξ)+1)Λ
c−1mMP(ξ)IK c−1mMP(ξ)IK IK

= 0

and, using twice the fact that det
[

A B
C D

]= det(AD −B D−1C D) when D is invertible, we find

det
(

IK + c−1mMP(ξ)Λ− c−2mMP(ξ)(ξmMP(ξ)+1)Λ
)= 0.

Then, notice that Equation (2.7) can be written as (zmz + 1)(1+ c−1mMP(z))−mMP(z) = 0 therefore
zmMP(z)+1 = mMP(z)

1+c−1mMP(z)
and the previous equation becomes

det

(
IK + c−1mMP(ξ)

1+ c−1mMP(ξ)
Λ

)
= 0. (2.10)

Hence we find that 1+ c−1mMP(ξ)
1+c−1mMP(ξ)

λk (Λ) = 0 ⇐⇒ mMP(ξ) = −c
λk (Λ)+1 for some k ∈ [K ]. At this point,

we must ask for which values of λk (Λ) a ξ verifying this relation may exist. From the properties of the
Stieltjes transform (Proposition 2.7), mMP is an increasing function on all connected components of

10This is because if z ∼N (0p , Ip ) then z
∥z∥ is uniformly distributed onSp−1 and

z2
1

∥z∥2 ∼ X
X+Y with X ∼χ2(1) and Y ∼χ2(p−1)

thus X
X+Y ∼ Beta( 1

2 ,
p−1

2 ).
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R \ SuppµMP. Furthermore, mMP(x) → 0 as x →±∞. Thus, if c−1 É 1, then SuppµMP = [E−,E+] and
mMP must be positive on ]−∞,E−[ and negative on ]E+,+∞[. If c−1 > 1, then SuppµMP = {0}∪[E−,E+]
and mMP can also be negative on ]0,E−[ but limx↑E− mMP(x) = −pc/(1−p

c) hence, for all x ∈]0,E−[,
mMP(x) <−c É−c/(λk (Λ)+1). As a result, an isolated eigenvalue can only lie on the right side of the
spectrum, i.e., ξ> E+. But, since limx↓E+ mMP(x) =−c/(

p
c+1), mMP maps ]E+,+∞[ onto ] −cp

c+1
,0[ and

mMP(ξ) = −c
λk (Λ)+1 has a solution if, and only if, λk (Λ) >p

c. Assuming this is verified, we can inject the
expression of mMP(ξ) into Equation (2.7),

ξc−1
(

c

λk (Λ)+1

)2

+ (
1− c−1 −ξ) c

λk (Λ)+1
+1 = 0 ⇐⇒ ξ= (λk (Λ)+ c)(λk (Λ)+1)

λk (Λ)c
.

Hence, for all k ∈ [K ],

λk (K )
a.s.−−−−−−→

p,n→+∞ ξk
def= (ℓk + c)(ℓk +1)

ℓk c
with ℓk = max(

p
c,λk (Λ)).

This shows the first convergence of Theorem 2.34.

Deterministic Equivalent of the Resolvent

From Equation (2.5), Equation (2.6) and the fact that E[mn(z)] = mMP(z)+Oz (n−1), we have,∥∥∥∥ 1

1+ c−1mMP(z)

1

p
P⊤PE[Q]−

(
zc−1mMP(z)− (

1− c−1 − z
))
E[Q]− In

∥∥∥∥−−−−−−→
p,n→+∞ 0

and (zc−1mMP(z)−(1−c−1−z)) =− 1
mMP(z) . Therefore, from the decomposition P = LV ⊤ with 1

n L⊤L →
Λwe can define the following deterministic equivalent (Definition 2.17) of Q(z):

Q̄(z) = mMP(z)

(
c−1mMP(z)

1+ c−1mMP(z)
VΛV ⊤+ In

)−1

.

Remark 2.39. From the definition of Q̄ and Equation (2.10) governing the asymptotic position of spike
eigenvalues, we see that their is an exact correspondence between the later and the singular points of
z 7→ Q̄(z). In particular Equation (2.10) can be written as mMP(ξ)det(V ⊤Q̄−1(ξ)V ) = 0.

Isolated Eigenvectors

Since Q(z) =∑n
i=1

ui (K )ui (K )⊤
λi (K )−z , with Cauchy’s integral formula (Proposition 2.15), we have, for k ∈ [K ],

〈vk ,uk (K )〉2 =− 1

2iπ

∮
γk

v⊤
k Q(z)vk dz

a.s.−−−−−−→
p,n→+∞ − 1

2iπ

∮
γk

v⊤
k Q̄(z)vk dz

where γk is a positively-oriented simple closed complex contour circling around λk (K ) and leaving all
other eigenvalues outside (which is possible by the confinement of the spectrum of 1

p N⊤N ). Assuming

λk (Λ) >p
c, the limiting integral can be computed with residue calculus (Proposition 2.16),

− 1

2iπ

∮
γk

v⊤
k Q̄(z)vk dz =− lim

z→ξk

(z −ξk )v⊤
k Q̄(z)vk

=− lim
z→ξk

(z −ξk )mMP(z)

[
c−1mMP(z)

1+ c−1mMP(z)
ℓk +1

]−1

.
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This last limit can be computed using L’Hôpital’s rule,

− lim
z→ξk

(z −ξk )mMP(z)

[
c−1mMP(z)

1+ c−1mMP(z)
ℓk +1

]−1

=−
(

d

dz

[
c−1

1+ c−1mMP(z)
ℓk +

1

mMP(z)

]
z=ξk

)−1

=
(

c−2m′
MP(ξk )(

1+ c−1mMP(ξk )
)2 ℓk +

m′
MP(ξk )

m2
MP(ξk )

)−1

.

We already know that mMP(ξk ) = − c
ℓk+1 . In order to find an expression for m′

MP(ξk ), we differentiate
Equation (2.7).

c−1m2
MP(z)+2zc−1mMP(z)m′

MP(z)+mMP(z)− (
1− c−1 − z

)
m′

MP(z) = 0

⇐⇒ m′
MP(z) =−

c−1m2
MP(z)+mMP(z)

2zc−1mMP(z)− (
1− c−1 − z

) .

With z = ξk , this simplifies into m′
MP(ξk ) = 1

ℓ2
k−c

(
ℓk c
ℓk+1

)2
and, skipping straightforward calculations, we

find that

〈vk ,uk (K )〉2 a.s.−−−−−−→
p,n→+∞ 1− ℓk + c

ℓk (ℓk +1)
.

This concludes the proof of Theorem 2.34.

2.4 Basic Concepts on Tensors and their Decompositions

We end this chapter by presenting basic notions on tensors and their decompositions. For a broader
introduction to tensors, we refer to Comon (2014); Landsberg (2011); Hackbusch (2012); Sun et al.
(2021); Bi et al. (2021).

2.4.1 The ABCs of Tensors

An order-d tensor T ∈ Rn1×...×nd is a d-way array composed of elements Ti1,...,id ∈ R with iℓ ∈ [nℓ] for
all ℓ ∈ [d ]. Just as vectors (order-1 tensors) and matrices (order-2 tensors) define linear and bilinear
forms, T defines a d-linear form

T :

{
Rn1 ×·· ·×Rnd → R(

u(1), . . . ,u(d)
) 7→ ∑n1

i1=1 · · ·
∑nd

id=1Ti1,...,id

∏d
ℓ=1 u(ℓ)

iℓ

.

This operation is called the contraction of T on u(1), . . . ,u(d). It can be extended to any d-uplet of
matrices: the contraction of T on A(ℓ) ∈Rnℓ×pℓ , ℓ ∈ [d ], gives a new tensor T(A(1), . . . , A(d)) ∈Rp1×...×pd

whose ( j1, . . . , jd )-entry is

[T(A(1), . . . , A(d))] j1,..., jd =T(A(1)
·, j1

, . . . , A(d)
·, jd

) =
n1∑

i1=1
· · ·

nd∑
id=1

Ti1,...,id

d∏
ℓ=1

A(ℓ)
iℓ, jℓ

.

The tensor contraction generalizes the matrix operation A(1)⊤M A(2) = M(A(1), A(2)).
We can define the Frobenius inner product between two tensors T,T′ ∈Rn1×...×nd as

〈
T,T′〉

F
def=

n1∑
i1=1

· · ·
nd∑

id=1
Ti1,...,idT

′
i1,...,id
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and the corresponding norm is the Frobenius norm ∥T∥F
def=

√
〈T,T〉F. A second tensor norm is the

spectral norm, that is, the operator norm induced by the Euclidean norm on vectors

∥T∥ def= max
u(ℓ)∈Snℓ−1, ℓ∈[d ]

∣∣∣T(u(1), . . . ,u(d))
∣∣∣.

An ℓ-fiber of T is the vector of Rnℓ obtained by fixing all indices of T but the ℓ-th. This is the
generalization of rows and columns of matrices, which are respectively 1- and 2-fibers. Similarly, an
ℓ-slice of T is the order-(d −1) tensor obtained by fixing only the ℓ-th index of T.

Unfolding (or matricization) is the process by which a matrix is built from a tensor. It is usually
performed along a given mode: T (ℓ) denotes the unfolding of T along mode ℓ ∈ [d ] — it is an nℓ ×∏
ℓ′ ̸=ℓnℓ′ matrix whose columns are ℓ-fibers of T in a certain predefined order11.

The outer product ⊗ of d vectors is an order-d tensor. This generalizes the operation by which

two vectors yield a rank-one matrix (x , y) 7→ x y⊤ def= x ⊗ y . Given x (1) ∈ Rn1 , . . . , x (d) ∈ Rnd , their outer
product is the n1×. . .×nd tensor denoted x (1)⊗. . .⊗x (d) or

⊗d
ℓ=1 x (ℓ) whose (i1, . . . , id )-entry is

∏d
ℓ=1 x(ℓ)

iℓ
.

Such a tensor is also said to have rank one.
Given two matrices A and B of respective sizes n1 × n2 and p1 × p2, their Kronecker product,

denoted A ⊠ B , is the n1p1 × n2p2 matrix such that [A ⊠ B ]p1(i1−1)+ j1,p2(i2−1)+ j2 = Ai1,i2 B j1, j2 for all
(i1, i2) ∈ [n1]× [n2] and ( j1, j2) ∈ [p1]× [p2]. This product also applies to n-dimensional vectors, seen
as n×1 matrices. The unfoldings of a tensor defined with outer products can easily be expressed with
Kronecker products. For instance,

[x ⊗ y ⊗ z](1) = x(y ⊠ z)⊤, [x ⊗ y ⊗ z](2) = y(x ⊠ z)⊤, [x ⊗ y ⊗ z](3) = z(x ⊠ y)⊤. (2.11)

Among the various properties of the Kronecker product (Abadir and Magnus, 2005, Chapter 10), we
highlight that it is bilinear, associative, non-commutative, (A ⊠ B )⊤ = A⊤ ⊠ B⊤ and (A ⊠ B )(C ⊠ D) =
(AC )⊠ (B D) when the matrix products AC and B D are defined (this is known as the mixed-product
property).

2.4.2 Tensor Decompositions and Tensor Ranks

Tensor decompositions are necessary to reveal information hiding in large multi-way arrays. We re-
view briefly two fundamental decompositions, namely the canonical polyadic decomposition and the
multilinear singular value decomposition. Both generalize, in a sense, the well-known matrix singular
value decomposition. We also discuss how they relate to the low-rank tensor approximation problem
under a signal-plus-noise model. More details about tensor decompositions and low-rank approx-
imations can be found in Sidiropoulos et al. (2017); Kolda and Bader (2009); Cichocki et al. (2015);
Rabanser et al. (2017); Vervliet et al. (2014, 2019).

The singular value decomposition (SVD) of a rank-R matrix M ∈ Rn1×n2 is
∑R

q=1σq uq v⊤
q where

σq = sq (M) > 0 is the q-th singular value and uq ∈ Sn1−1, vq ∈ Sn2−1 are the corresponding left and
right singular vectors. Can we perform a similar decomposition with a tensor T ∈Rn1×...×nd ?

Canonical Polyadic Decomposition (CPD)

A natural way to extend the previous matrix decomposition to tensors is to express T as

T =
R∑

q=1
σq

d⊗
ℓ=1

u(ℓ)
q

11This order does not matter as long as other operations, such as the Kronecker product, are defined in a consistent manner.
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with σq > 0, ∥u(ℓ)
q ∥ = 1 and R minimal, in the sense that it is not possible to express T with less rank-

one components. This decomposition is known as the canonical polyadic decomposition (CPD), CAN-
DECOMP or PARAFAC and dates back to Hitchcock (1927). It is essentially unique — i.e., unique up to
permutations — under mild conditions (see, e.g., Sidiropoulos et al., 2017, Section IV) and defines R
as the rank of the tensor T.

However, we have lost a very important property in trying to generalize the matrix SVD in this way:
the vectors {u(ℓ)

q }q∈[R] are no longer orthogonal in general, 〈u(ℓ)
q ,u(ℓ)

q ′ 〉 ̸= 0 for all q, q ′ ∈ [R]. Further-

more, the set {X ∈Rn1×...×nd | RankXÉ R} of tensors with rank at most R is not closed as soon as R Ê 2.
This observation is disturbing in a context where we seek a low-rank approximation of a tensor — the
best rank-R approximation may not exist!

Multilinear Singular Value Decomposition (MLSVD)

Another way to extend the matrix SVD is, instead of keeping the diagonality and irretrievably loosing
the orthogonality, to keep the orthogonality, but this also implies loosing the diagonality. Specifically,
the multilinear singular value decomposition (MLSVD) of T is

T =
r1∑
q1

· · ·
rd∑

qd=1
Gq1,...,qd

d⊗
ℓ=1

u(ℓ)
qℓ

def=
�
G;U (1), . . . ,U (d)

�

where G is an r1× . . .×rd core tensor and U (ℓ) =
[

u(ℓ)
1 . . . u(ℓ)

rℓ

]
is an nℓ×rℓ matrix with orthonormal

columns (U (ℓ)⊤U (ℓ) = Irℓ ), i.e., it belongs to the Stiefel manifold Vrℓ (Rnℓ ) (Chikuse, 2003; Absil et al.,

2009). (u(ℓ)
1 , . . . ,u(ℓ)

rℓ ) forms an orthonormal basis of the subspace of Rnℓ spanned by the ℓ-fibers of T,

that is, the left singular subspace of the unfolding T (ℓ). Moreover, althoughG is not diagonal, it keeps a
“sub-diagonality” property in the sense that, if the columns of U (ℓ) are the left singular vectors of T (ℓ),
then two distinct slices of G along a mode ℓ ∈ [d ] are orthogonal (for the Frobenius inner product)
and the Frobenius norm of each slice along this mode is a singular value of T (ℓ). This decomposition,
introduced by Tucker (1966), is also called higher-order SVD (HOSVD, De Lathauwer et al., 2000b) and
defines (r1, . . . ,rd ) as the multilinear rank of T.

This second notion of rank seem better suited to low-rank approximation problems since the set
{X ∈ Rn1×...×nd | RankX É (r1, . . . ,rd )} is closed whatever the value of (r1, . . . ,rd ). Hence, the best low-
multilinear-rank approximation is well-defined. Note that, in the matrix case, both notions of rank
coincide: (r1,r2) = (R,R).

Remark 2.40 (Uniqueness of the MLSVD up to isometries). For all orthogonal matrices O(ℓ) ∈ Orℓ (R),
ℓ ∈ [d ], we have the equivalent decomposition�

G;U (1), . . . ,U (d)
�
=

�
Ğ;U (1)O(1), . . . ,U (d)O(d)

�
with Ğ=G(O(1), . . . ,O(d)).

Nevertheless, up to isometries, the multilinear singular value decomposition is unique (De Lathauwer
et al., 2000b, Property 4).

We call a Tucker decomposition the decomposition ofT in the general form �G;U (1), . . . ,U (d)�where
G is a tensor and U (1), . . . ,U (d) are matrices. The multilinear singular value decomposition (MLSVD)
thus corresponds to a particular case of Tucker decomposition where U (ℓ) is the matrix of left singular
vectors of T (ℓ), for all ℓ ∈ [d ].

Remark 2.41 (Contraction and Tucker decomposition). If T = �G;U (1), . . . ,U (d)� then

T(A(1), . . . , A(d)) =
�
T; A(1)⊤, . . . , A(d)⊤

�
=

�
G; A(1)⊤U (1), . . . , A(d)⊤U (d)

�
.
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Remark 2.42 (CPD and Tucker decomposition). The canonical polyadic decomposition is also a par-
ticular case of Tucker decomposition where G is diagonal.

The unfoldings of T can be expressed with matrix and Kronecker products between the factor
matrices and the unfoldings of the core tensor G. For instance, if T = �G;U ,V ,W �,

T (1) =UG (1)(V ⊠W )⊤, T (2) =V G (2)(U ⊠W )⊤, T (3) =W G (3)(U ⊠V )⊤.

Note how these expressions generalize (2.11).

Signal-plus-Noise Models

Similarly to signal-plus-noise matrix models, a signal-plus-noise tensor model has the form T =P+N
where N is a random tensor (the noise) and P is a finite-rank perturbation (the signal). Again, we
say that P is a low-rank perturbation since its rank remains finite while the rank of N diverges almost
surely as the tensor grows.

The CP-rank R of the CPD and the multilinear rank (r1, . . . ,rd ) of the MLSVD are constrained by
the following inequality,

max
1ÉℓÉd

rℓ É R É min
1ÉℓÉd

∏
ℓ′ ̸=ℓ

rℓ′ . (2.12)

Hence, low CP-rank implies low multilinear rank and vice versa. Thus, we can generally speak of a
low-rank perturbation P without mentioning which rank it actually refers to.

Yet, in order to estimate P from T =P+N with a low-rank approximation, it is much more conve-
nient to consider a multilinear rank to avoid ill-posedness of the problem. Problem (1.9) mentioned
in the introduction is well-posed if the minimization is over a set of low-multilinear-rank tensors
M = {X ∈Rn1×...×nd | RankXÉ (r1, . . . ,rd )}.
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Random Matrix Models for Spectral
Clustering
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Chapter 3

Asymptotic Gaussian Fluctuations of
Eigenvectors in Spectral Clustering

Nota Bene. Although this chapter arrives directly after the introduction of the technical tools, it does not
represent the heart of this thesis and is meant to prove a fundamental CLT-like result on which we can
rely afterwards.

SPECTRAL clustering is a popular unsupervised classification technique which finds applications
in many domains, such as image segmentation (Shi and Malik, 2000), text mining (Brew and

im Walde, 2002), and as a general purpose method for data analysis (Ng et al., 2002; von Luxburg,
2007; Ding et al., 2001). It relies on the spectrum of a suitably chosen similarity matrix to perform di-
mensionality reduction before applying a standard clustering algorithm such as K -means. Consider,
e.g., the following toy example where n vectors x1, . . . , xn ∈ Rp are separated in two clusters C +, C −

centered around +µ, −µ respectively, i.e., xi = ±µ+ ni where ni ∼ N (0, In). Then, the dominant
eigenvector u1(K ) of the Gram kernel matrix K = 1

p [x⊤
i x j ]1Éi , jÉn is an information-theoretically opti-

mal estimator (Onatski et al., 2013; Löffler et al., 2021) of the vector 1p
n

j such that ji =±1 if xi ∈ C ±.

In this case, clustering is achieved with the trivial decision rule xi →C ± if [u1(K )]i ≷ 0.
The achievable performances of spectral clustering can be theoretically predicted thanks to the

study of random matrix models corresponding to similarity matrices. For this purpose, we have at
hand the powerful tools presented in Chapter 2. In particular, they allow to derive the limiting spec-
tral distribution of the kernel matrix and to predict the position of isolated eigenvalues in spiked ran-
dom matrix models (Baik and Silverstein, 2006; Benaych-Georges and Nadakuditi, 2011; Couillet and
Benaych-Georges, 2016). The latter are of particular importance as, in a wide range of problems, the
information of interest can be modeled as a low-rank signal corrupted with noise. In our previous toy
example, the data matrix X = [

x1 . . . xn
]

is a rank-one perturbation µ j⊤ of a noise matrix N with
i.i.d. N (0,1) entries. In order to theoretically predict the error rate of spectral clustering for a given
signal-to-noise ratio, one must therefore study the behavior of the dominant eigenvectors of the sim-
ilarity matrix. Tools such as the ones used in Section 2.3 or in Couillet and Benaych-Georges (2016);
Couillet et al. (2021) allow to express the quality of their alignment with the true underlying signal, i.e.,
|〈 1p

n
j ,u1(K )〉|. Although this tells us when an estimation of the signal is possible (depending on the

signal-to-noise ratio) and its efficiency, a precise characterization of the fluctuations of the entries of
spiked eigenvectors still lacks to rigorously predict the error rate of spectral clustering. Indeed, in our
toy example, the expected error rate P( ji [u1(K )]i < 0) cannot be expressed unless the law of u1(K ) is
known.
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Yet, it is often stated that the entries of u1(K ) have Gaussian fluctuations in the large-dimensional
regime, so that P( ji [u1(K )]i < 0) is a Gaussian integral. In Kadavankandy and Couillet (2019), this
result is formally stated but no proof is given. Hence, we fill this missing gap with a rigorous proof of
this phenomenon for a general spiked random matrix model. Although we stick to a simple signal-
plus-noise model here, the proposed proof is not restricted to Gaussian noise (in fact, the noise only
needs to be rotationally invariant) and can easily be adapted to most standard spiked models (such as,
notably, the general model considered in Benaych-Georges and Nadakuditi (2011)). Our result and its
proof thus support a wide range of previous works studying the performance of spectral algorithms.
The demonstration can be summarized in two simple facts

(i) an eigenvector of the kernel matrix can be decomposed into the sum of a deterministic signal
part and a random noise part

(ii) the random part is uniformly distributed on a certain sphere, hence any finite subset of its en-
tries tends to a centered Gaussian vector in the large-dimensional limit.

Random matrix results on the performance of spectral clustering often (reasonably) assume a
Gaussian distribution of the entries of spike eigenvectors without ever providing a proof. The pur-
pose of this chapter is thus to do it once and for all. We consider a general signal-plus-noise random
matrix model and briefly recall known results regarding its limiting spectral distribution and the be-
havior of its dominant eigenvalues and eigenvectors. Then, we show that the entries of the kernel
eigenvectors indeed have Gaussian fluctuations in the large-dimensional regime. We present a short,
self-contained and general proof which is our main contribution. Finally, we illustrate this result with
numerical experiments on synthetic and real data.

Simulations. Python codes to reproduce simulations are available in the following GitHub reposi-
tory https://github.com/HugoLebeau/asymptotic_fluctuations_spectral_clustering.

3.1 Model and Main Result

3.1.1 Spiked Matrix Model

Consider the following statistical model introduced in Section 2.2.3,

X = P +N ∈Rp×n , P = LV ⊤ (3.1)

with L ∈ Rp×K and V = [
v1 . . . vK

] ∈ Rn×K such that V ⊤V = IK . It models a low-rank signal P cor-

rupted by additive Gaussian noise Ni , j
i.i.d.∼ N (0,1). In a spectral clustering perspective, K represents

the number of classes and P = M J⊤ where M = [
µ1 . . . µK

]
is a matrix gathering the K cluster

means and Ji ,k = 1 if xi is in the k-th cluster (i.e., xi =µk +ni ) and 0 otherwise. This is congruent with
model (3.1): define the K ×K diagonal matrix D = Diag(n1, . . . ,nK ) where nk is the number of samples
belonging to the k-th cluster, then P = M J⊤ = LV ⊤ with L = MD1/2 and V = J D−1/2. This is precisely
the K -class generalization of Model (1.6) presented in the introduction.

Given model (3.1), we are interested in the reconstruction of V from the dominant eigenvectors of
the Gram kernel matrix K = 1

p X ⊤X . We study this problem in the asymptotic regime where p,n →+∞
at the same rate, i.e., 0 < c

def= p/n <+∞. This models the fact that, in practice, the number of samples
n is comparable to the number of features p and they are both large. Moreover, we make the following
assumptions.

Assumption 3.1. All classes are of comparable size, i.e., liminfnk /n > 0 as p,n →+∞ for all k ∈ [K ].
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Figure 3.1: Left: Empirical spectral distribution (ESD) and limiting spectral distribution (LSD) of K =
1
p X ⊤X with the almost sure limits of λk (K ), k ∈ [K ]. Right: Asymptotic alignments between vk and
uk (K ) as a function of the position of the corresponding eigenvalue of K . Experimental setting: p =
2000, n = 1000, K = 3, (n1,n2,n3) = (333,334,333) and (∥µ1∥,∥µ2∥,∥µ3∥) = (3,4,5).

Assumption 3.2. lim
p,n→+∞ max

1ÉiÉn
1ÉkÉK

p
nV 2

i ,k = 0.

Assumption 3.3. There exist λ1 > . . . > λK > 0 such that, with Λ
def= Diag(λ1, . . . ,λK ), ∥ 1

n L⊤L −Λ∥→ 0
as p,n →+∞ and the columns of V are ordered accordingly (i.e., vk is associated with λk ).

The fact that λk ̸= λk ′ if k ̸= k ′ in Assumption 3.3 is only to simplify the presentation of the results
so it is not necessary, but often verified in practice. However, Assumption 3.2 states that V must be
delocalized, i.e., not sparse. It is naturally verified for spectral clustering as a result of Assumption
3.1 since V = J D−1/2, but the results presented below concern the statistical model (3.1), which is
more general and also encompasses PCA for example (Couillet et al., 2021). In a spectral clustering
perspective, since L = MD1/2, Assumption 3.3 implies that, as p,n →+∞, ∥µk∥ =Θ(1) for all k ∈ [K ]
and 〈µk ,µk ′〉→ 0 if k ̸= k ′.

3.1.2 Eigenvalue Distribution and Spiked Eigenvalues

We briefly recall known results on model (3.1) in order to set the ground for our main result in Theorem
3.4.

Firstly, the limiting behavior of the empirical spectral distribution of K , that is 1
n

∑
λ∈SpK δλ is given

by Theorem 2.33: as p,n →+∞, the histogram of eigenvalues of K converges weakly to the Marčenko-
Pastur distribution µMP, as depicted in the left panel of Figure 3.1.

Then, Theorem 2.34 specifies the limiting behavior of the K dominant eigenvalues and eigenvec-
tors of K . Due to the low-rank perturbation P , the K dominant eigenvalues of K may isolate them-
selves from the bulk of Marčenko-Pastur if their corresponding signal-to-noise ratios (the eigenvalues
of Λ) are large enough — they are then called spikes. Theorem 2.34 states that λk (K ) leaves the bulk
as soon as λk (Λ) >p

c (this is a well-known phase transition phenomenon (Baik et al., 2005)) and fur-

ther gives its almost sure asymptotic position ξk
def= (ℓk+c)(ℓk+1)

ℓk c where ℓk
def= max(

p
c,λk (Λ)). This is

illustrated in Figure 3.1 as well. Moreover, Theorem 2.34 indicates the almost sure asymptotic align-

ment ζk
def= 1− ℓk+c

ℓk (ℓk+1) of the corresponding eigenvector uk (K ) with the underlying signal vk . This is
depicted in the right panel of Figure 3.1 and the top row of Figure 3.2.

As mentioned in the discussion in Section 2.2.3, these results are not restricted to Gaussian noise:
up to a control on the moments of the distribution, they can be generalized thanks to an “interpolation
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Figure 3.2: Dominant eigenvectors of K = 1
p X ⊤X . Top: Coordinates of uk (K ) (blue) and the under-

lying signal
√
ζk vk (orange) with ζk = 1− ℓk+c

ℓk (ℓk+1) . The dotted orange lines are the ±1σ-error curves

deduced from Theorem 3.4. Bottom: Histogram of the entries of uk (K )−
√
ζk vk (blue) and probabil-

ity density function of N (0, 1−ζk
n ) (orange). Experimental setting: like in Figure 3.1.

trick” (Lytova and Pastur, 2009, Corollary 3.1). In addition, a similar spectral behavior is observed with
non-i.i.d. noise following the realistic assumption that it is concentrated (El Karoui, 2009; Louart and
Couillet, 2021).

3.1.3 Fluctuations of Spiked Eigenvectors Entries

The almost sure convergence of 〈vk ,uk (K )〉2 to ζk
def= 1− ℓk+c

ℓk (ℓk+1) stated in Theorem 2.34 is an impor-
tant result which justifies the use of the dominant eigenvectors of K as estimators of the underlying
signal V . Yet, it is not enough to characterize their reconstruction performance. Indeed, the fluctua-
tions of the entries of uk (K ) must be known to fully characterize how it is aligned with vk .

Consider, e.g., the multi-class spectral clustering problem with P = M J⊤. Here, [vk ]i = Ji ,k /
p

nk .
Hence, xi is classified in the k-th class if [uk (K )]i > [uk ′ (K )]i for all k ′ ̸= k. The reconstruction per-
formance thus depends on the probability of correct classification P([uk (K )]i > [uk ′ (K )]i | Ji ,k = 1).
In the theorem below, we show that the entries of uk (K ) asymptotically have Gaussian fluctuations
around those of vk with variance (1−ζk )/n, as illustrated in the bottom row of Figure 3.2.

Theorem 3.4. For all finite ordered set of indices I = (i1, . . . , i|I |) ⊂ [n] and k ∈ [K ],

p
n√

1−ζk

[
uk (K )−

√
ζk vk

]
I

D−−−−−−→
p,n→+∞ N (0|I |, I|I |) (3.2)

with uk (K ) such that 〈vk ,uk (K )〉 Ê 0 (otherwise, consider −uk (K )). Furthermore, the |I |-dimensional
vectors

p
n[u1(K )]I , . . . ,

p
n[uK (K )]I are asymptotically mutually independent.

This result invokes the quantity ζk , which quantifies the alignment of uk (K ) with vk (see The-

orem 2.34). Theorem 3.4 specifies that [uk (K )]I behaves like N (
√
ζk [vk ]I , 1−ζk

n I|I |) in the large-
dimensional regime. That is, the more uk (K ) is aligned with vk (i.e., the closer ζk is to 1), the more its
entries concentrate around those of

√
ζk vk , since the variance is (1−ζk )/n. Moreover, the entries ofp

n[uk (K )]I are asymptotically independent for any finite ordered set of indices I . In the multi-class

62



3.2. Proof of Theorem 3.4

spectral clustering problem considered above, since
p

n[uk (K )] and
p

n[uk ′ (K )] are asymptotically
independent if k ′ ̸= k, Theorem 3.4 yields

P([uk (K )]i > [uk ′ (K )]i | Ji ,k = 1) =Φ
(√

n

nk

ζk

2− (ζk +ζk ′ )

)
+o(1)

whereΦ : x 7→ 1p
2π

∫ x
−∞ e−

t2
2 dt is the Gaussian cumulative distribution function.

We prove Theorem 3.4 in Section 3.2 below. The proof hinges on the rotational invariance of the
noise (Lemma 3.5). In fact, it does not need the entries of N to be distributed according to the Gaussian
law, but only that its distribution be invariant under isometries. This makes it a very general proof,
which can easily be adapted to most standard spiked models as those discussed, e.g., in Couillet and
Liao (2022, Section 2.5.4).

3.2 Proof of Theorem 3.4

Consider the tangent-normal decomposition

uk (K ) =
K∑
κ=1

τκvκ+
√

1−∥τ∥2u♯

k (3.3)

where u♯

k = (In −V V ⊤) uk (K )p
1−∥τ∥2

is a unit-norm vector orthogonal to the span of V and τ ∈ [−1,1]K

with τκ = 〈vκ,uk (K )〉, κ ∈ [K ], measuring the cosine between vκ and uk (K ). Let O ∈ On(R) be an
n ×n orthogonal matrix such that OV = V — i.e., a rotational symmetry about the span of V — and

K̃
def= OKO⊤. Then, since 1

p X ⊤X and X = LV ⊤+N ,

K̃ = 1

p

(
[OV ]L⊤L[OV ]⊤+ [OV ]L⊤[

NO⊤]+ [
NO⊤]⊤

L[OV ]⊤+ [
NO⊤]⊤[

NO⊤])
.

Lemma 3.5. N and NO⊤ are identically distributed.

Proof. The entries of N form a Gaussian random vector (by the independence of the entries). Thus,
the distribution of [NO⊤]i , j =

∑n
k=1 Ni ,kO j ,k is N (0,1) and Cov([NO⊤]i , j , [NO⊤]i ′, j ′ ) = δi ,i ′δ j , j ′ is 1 if

(i , j ) = (i ′, j ′) and 0 otherwise. Hence [NO⊤]i , j
i.i.d.∼ N (0,1) and NO⊤ is identically distributed to N .

According to the previous lemma, K̃ follows the same model as K since OV =V . Therefore, its k-th
dominant eigenvector can likewise be decomposed as

uk (K̃ ) =
K∑
κ=1

τ̃κvκ+
√

1−∥τ̃∥2ũ♯

k

with τ̃κ = 〈vκ,uk (K̃ )〉 and ũ♯

k = (In −V V ⊤) uk (K̃ )p
1−∥τ̃∥2

identically distributed to u♯

k . Yet, uk (K̃ ) = Ouk (K ).

Thus, u♯

k and Ou♯

k are identically distributed for all O ∈ On(R) such that OV = V . Let η denote the

probability distribution of u♯

k and V ⊥ = {a ∈ Rn | V ⊤a = 0K }. We claim that η is the uniform distribu-

tion on Sn−1 ∩V ⊥. Indeed, given x ∈Sn−1 ∩V ⊥, we have shown that dη(x) = dη(Ox) for all O ∈On(R)

such that OV =V . Then, given any y ∈Sn−1∩V ⊥, the orthogonal matrix O = In − (x−y)(x−y)⊤
1−x⊤y

satisfies

OV = V and Ox = y (it is the reflection with respect to the hyperplane orthogonal to x − y). Hence

dη(x) = dη(y) for all x , y ∈Sn−1 ∩V ⊥, i.e., u♯

k is uniformly distributed on Sn−1 ∩V ⊥.
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Remark 3.6. Notice that Sn−1 ∩V ⊤ is isomorphic to Sn−1−K . In the particular case where n = 3 and
K = 1, this is simply the intersection between the 3-dimensional sphere and a 2-dimensional plane
containing the origin — it is thus the unit circle.

Then, u♯

k can be written as U wk where wk is uniformly distributed on Sn−K−1 ⊂ Rn−K and U ∈
Rn×(n−K ) is such that U⊤U = In−K and U⊤V = 0(n−K )×K (the columns of U form an orthonormal basis

of V ⊥ in Rn). We use the following theorem to identify the asymptotic distribution of
p

n[u♯

k ]I .

Theorem 3.7 (Schoenberg, 1938; Steerneman and van Perlo-ten Kleij, 2005). The characteristic func-

tion of a vector w uniformly distributed on Sn−1 is given by ϕw (t )
def= E[e it⊤w ] =Ωn(∥t∥) with

Ωn : r Ê 0 7→
Γ( n

2 )
p
πΓ( n−1

2 )

∫ 1

−1
e ir t (1− t 2) n−3

2 dt .

Moreover, r 7→Ωn(r
p

n) converges uniformly in r Ê 0 to r 7→ e−
r 2
2 as n →+∞, i.e.,

lim
n→+∞sup

rÊ0

∣∣∣∣Ωn(r
p

n)−e−
r 2
2

∣∣∣∣= 0.

Let t ∈Rn be such that ti = 0 if i ̸∈I . The characteristic function of
p

n[u♯

k ]I is

ϕp
n[u♯k ]I

(ti1 , . . . , ti|I | ) = E
[

e i
p

nt⊤U wk
]

=Ωn−K
(p

n
∥∥U⊤t

∥∥)
and ∥U⊤t∥ =

√
∥t∥2 −∥V ⊤t∥2 = ∥t∥+O (∥V ⊤t∥2). According to Assumption 3.2,

p
n∥V ⊤t∥2 → 0 as

p,n →+∞, thusΩn−K (
p

n∥U⊤t∥) =Ωn−K (
p

n −K ∥t∥+ϵn) with ϵn → 0 as p,n →+∞ and∣∣∣Ωn−K (
p

n −K ∥t∥+ϵn)−e−
1
2 ∥t∥2

∣∣∣É∣∣∣∣Ωn−K (
p

n −K ∥t∥+ϵn)−e−
1
2

[∥t∥+ϵn /
p

n−K
]2

∣∣∣∣+ ∣∣∣∣e− 1
2

[∥t∥+ϵn /
p

n−K
]2

−e−
1
2 ∥t∥2

∣∣∣∣.
As p,n →+∞, the first term vanishes from the uniform convergence given in Theorem 3.7 and the sec-

ond term vanishes by continuity. Therefore, ϕp
n[u♯k ]I

(ti1 , . . . , ti|I | ) → e−
∥t∥2

2 and, by Lévy’s continuity

theorem (Billingsley, 2012, Theorem 26.3), we can conclude that

p
n[u♯

k ]I
D−−−−−−→

p,n→+∞ N (0|I |, I|I |).

Finally, the decomposition given by Equation (3.3) yields

uk (K ) =
√
ζk vk +

√
1−ζk u♯

k +ε with ε=
K∑
κ=1

rκvκ+O (rk )×u♯

k

where rκ = τκ if κ ̸= k and rk = τk −
√
ζk . Thus, rκ → 0 almost surely as p,n → +∞ for all κ ∈ [K ]

from Theorem 2.34. In order to conclude our proof of the convergence (3.2), we just need to show

that
p

n[ε]I
D−−−−−−→

p,n→+∞ 0. It is already clear that O (rk )×p
n[u♯

k ]I
D−−−−−−→

p,n→+∞ 0 so it remains to show that

p
nrκ[vκ]I

D−−−−−−→
p,n→+∞ 0 for all κ ∈ [K ]. We have1 Varr 2

κ = O (n−1) and, by Assumption 3.2,
p

n[vκ]2
i =

1As shown in Section 2.3.3, 〈vκ,uκ(K )〉2 = − 1
2iπ

∮
γκ

v⊤
κ Q(z)vκ dz thus Var(r 2

κ) = E[|− 1
2iπ

∮
γκ

v⊤
κ (Q(z)− E[Q(z)])vκ dz|2] É

1
4π2

∮
γκ
E[|v⊤

κ (Q(z)−E[Q(z)])vκ|2] dz where the interchange between E and
∮
γκ

is allowed since the integrand is bounded. In

Section 2.3.1, we have shown that E[|v⊤
κ (Q(z)−E[Q(z)])vκ|2] =Oz (n−1) therefore Var(r 2

κ) =O (n−1).
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o(1) for all i ∈ I . Therefore (
p

nrκ[vκ]i )2 vanishes in quadratic mean as p,n →+∞ and this implies
p

nrκ[vκ]I
D−−−−−−→

p,n→+∞ 0 by the continuity of x 7→ p
x and the continuous mapping theorem (van der

Vaart, 1998, Theorem 2.3).
In order to show the asymptotic mutual independence of

p
n[u1(K )]I , . . . ,

p
n[uK (K )]I , consider

the tangent-normal decomposition (3.3) for each k ∈ [K ] and, with the same arguments, construct

W = [
w1 . . . wK

]
where the wk ’s are such that u♯

k = U wk for all k ∈ [K ]. Let Ŵ = W (W ⊤W )−1/2.

For all orthogonal matrix O ∈ On−K (R), OW is identically distributed to W and therefore OŴ is iden-
tically distributed to Ŵ as well. Moreover, Ŵ ⊤Ŵ = IK so Ŵ is, in fact, uniformly distributed on the

Stiefel manifold VK (Rn−K )
def= {A ∈ R(n−K )×K | A⊤A = IK }. From Theorem 2.2.1 of Chikuse (2003), Ŵ is

identically distributed to Z (Z ⊤Z )−1/2 where Z is an (n−K )×K matrix with i.i.d. N (0,1) entries. Thusp
nŴ is identically distributed to Z (Z ⊤Z /n)−1/2 and, by the strong law of large numbers (Billingsley,

2012, Theorem 6.1), 1
n Z ⊤Z → IK almost surely. Hence, by Slutsky’s theorem (Casella and Berger, 2001,

Theorem 5.5.17), any finite set of the entries of
p

nŴ converges to a set of i.i.d. N (0,1) variables in the
limit p,n → +∞. Furthermore, since W = Ŵ (W ⊤W )1/2 and W ⊤W → IK almost surely by Theorem
2.34, the same reasoning shows that any finite set of the entries of

p
nW converges to a set of i.i.d.

N (0,1) variables in the limit p,n →+∞.

Then, let U ♯ def=
[

u♯
1 . . . u♯

K

]
and U ♯

I
=

[
[u♯

1]I . . . [u♯
K ]I

]
. Consider the characteristic func-

tion of
p

nU ♯
I

, that is, ϕp
nU ♯

I

(T ) = E[exp(iTr(
p

nT ⊤U ♯))] where T is an n ×K matrix whose entry Ti ,k

is 0 if i ̸∈ I . Since U ♯ =UW , we have ϕp
nU ♯

I

(T ) =ϕW (
p

nU⊤T ) where ϕW is the characteristic func-

tion of W , whose distribution is left-spherical (OW is identically distributed to W ) therefore there
exists a function fn−K : RK×K → R such that ϕW (S) = fn−K (S⊤S) for all S ∈ R(n−K )×K (Li, 1993). As a
result, ϕp

nU ♯
I

(T ) = fn−K (nT ⊤UU⊤T ). Because any finite set of the entries of
p

nW converges to a

set of i.i.d. N (0,1) variables in the limit p,n →+∞, we have fn−K (nT ⊤T ) → exp(− 1
2 T ⊤T ) by Lévy’s

continuity theorem (Billingsley, 2012, Theorem 26.3). To conclude, recall that UU⊤ = In −V V ⊤ thus
nT ⊤UU⊤T = nT ⊤T +p

nϵn where ϵn is such that ∥ϵn∥→ 0 as per Assumption 3.2 and the fact that T
has a finite number of non-zero entries. Hence,ϕp

nU ♯
I

(T ) = fn−K (n(T ⊤T + ϵnp
n

)) → exp(− 1
2 T ⊤T ). This

shows that the entries of
p

nU ♯
I

are i.i.d. N (0,1) variables and concludes the proof of Theorem 3.4.

3.3 Numerical Experiments

To illustrate this result, we conduct a first experiment on synthetic data following model (3.1) with
K = 3 classes of equal size and (∥µ1∥,∥µ2∥,∥µ3∥) = (3,4,5). The xi ’s are ordered by class. The spectral
distribution of K and the alignments with v1, v2, v3 of its dominant eigenvectors are plotted in Figure
3.1. Figure 3.2 shows the dominant eigenvectors with the histograms of residuals uk (K )−

√
ζk vk . We

observe a very good fit of the latter to the probability density function of N (0, 1−ζk
n ) — the uk (K )’s

exactly correspond to a deterministic signal
√
ζk vk corrupted by additive centered Gaussian noise.

The signal-plus-noise structure of model (3.1) has been transferred to the spectral estimator of V .
Then, we conduct a second experiment on the Fashion-MNIST dataset (Xiao et al., 2017) consisting

of 28×28 images of clothes separated in 10 classes of size 7000 each. We select two classes k1,k2 and
perform binary spectral clustering using the dominant eigenvector of K = 1

p X ⊤X where the columns
of X are the 784 pixels of the images from classes k1 and k2. The dimension of X is thus 784×14000.
Here, we assume a similar model as our toy example in the introduction of this chapter: X =µ j⊤+N
where ji = ±1 depending on the class of the i -th image. Thus, according to Theorem 3.4, the i -th

entry of the dominant eigenvector u1(K ) asymptotically follows N
(√

ζ
jip
n

, 1−ζ
n

)
and, given j , ζ can be
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Figure 3.3: Observed (upper right, blue) and predicted (lower left, orange) classification accuracies of
binary spectral clustering on the Fashion-MNIST dataset (Xiao et al., 2017).

estimated with the squared empirical mean2 (
∑n

i=1
jip
n

[u1(K )]i )2. We can then compare the observed

accuracy 1
n

∑n
i=1 1 ji [u1(K )]i>0 to the one expected from Theorem 3.4, P( ji [u1(K )]i > 0) = Φ

(√
ζ

1−ζ
)
+

o(1). The results are presented in Figure 3.3 for each pair of classes k1,k2.
We find a very good agreement between the observed and predicted accuracies, regardless of

whether the problem is easy (e.g., Trouser vs Sandal) or hard (e.g., Bag vs Ankle Boot). This observation
confirms the general scope of Theorem 3.4: starting from real data X which is clearly not Gaussian,
the normal distribution naturally emerges in the fluctuations of the entries of the large-dimensional
eigenvector u1(K ).

3.4 Conclusion

After recalling known results on spectral clustering under a general signal-plus-noise random matrix
model, we have shown that the entries of spiked eigenvectors have Gaussian fluctuations in the large-
dimensional regime. This formalizes and clearly states a result which is often implicitly assumed in
many problems, without ever being actually proven. The proposed proof relies solely on the rotational
invariance of the noise. It is thus very general and can easily be extended to most standard spike mod-
els. Numerical experiments have demonstrated the universality of this phenomenon: the Gaussian
behavior of the entries of spike eigenvectors can even be observed on real unprocessed data. This
allows to accurately predict the classification performance of spectral clustering.

In the next chapter, we consider a more exotic spiked model which brings a powerful approach to
spectral clustering under limited memory constraint. Our characterization of the fluctuations of the
entries of spike eigenvectors (Theorem 3.4), combined with the random matrix tools introduced in
Chapter 2, will be essential to thoroughly describe the performances of the proposed method.

2In practice, j is unknown and ζ can be estimated by maximum likelihood.
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Chapter 4

A Random Matrix Analysis of Data
Stream Clustering: Coping With
Limited Memory Resources

THE ever-increasing amount of data coupled with the need for a more sober use of computational
power puts online learning in the spotlight, as a way to deal with numerous and very large data

with low memory resources. Be it because the volume of data is too high to be stored or because one
is restricted to the sole use of a regular laptop, online learning appears as a handy and frugal way to
process information. As data arrives in the learning pipeline, it is processed at a low computational
cost before being discarded altogether, thus inducing a limited memory footprint.

Numerous works have proposed various algorithms to cluster data streams in an unsupervised
manner (see, e.g., Ghesmoune et al. (2016); Zubaroğlu and Atalay (2021) and references therein).
Among standard methods are the construction of a graph (Fritzke, 1995) or a tree of clusters (Zhang
et al., 1996) which is updated as new data arrives, or else, the formation of clusters using a distance
function, as in K -means, (Aggarwal et al., 2003) or a density-based method (Ester et al., 1996). Such al-
gorithms are often adaptations of existing offline algorithms, like OpticsStream (Tasoulis et al., 2007),
StreamKM++ (Ackermann et al., 2012), online K -means (Liberty et al., 2015; Cohen-Addad et al., 2021),
etc. These techniques operate on the entire feature space and their performance deteriorate as the di-
mension of the data increases. Therefore, Aggarwal et al. (2004) propose to cluster data streams after
a projection on a lower-dimensional space. Sketching methods (Keriven et al., 2018; Gribonval et al.,
2021) are also convenient to perform large-scale learning on data streams with a limited memory bud-
get; the idea being to summarize the dataset into a single vector computed in one pass over the data.

Adapted from the standard spectral clustering algorithm (von Luxburg, 2007), techniques like in-
cremental spectral clustering (Ning et al., 2010; Dhanjal et al., 2014) have been proposed to handle
evolving data. Yet, they become quite memory-demanding when the number of samples grows large.
Better suited to streaming applications, the spectral clustering algorithm of Yoo et al. (2016) constructs
a spectral embedding of the stream in one pass by adapting ideas from matrix sketching (Liberty,
2013).

Spectral clustering has indeed remarkably good performances on high-dimensional data as it
manages to greatly reduce the dimensionality by keeping just a few leading spectral components. It
is therefore computationally less demanding than many other classical clustering algorithms. More-
over, it reaches the optimal phase transition threshold (i.e., it performs better than random guess as
soon as theoretically possible) (Onatski et al., 2013) and achieves the optimal clustering error rate in
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the Gaussian mixture model (Löffler et al., 2021).
From a random matrix theory perspective, spectral clustering is also of particular interest. Fol-

lowing the works of El Karoui (2010) and Cheng and Singer (2013) on the spectrum of kernel random
matrices, Couillet and Benaych-Georges (2016) propose an analysis of kernel spectral clustering with
numerous high-dimensional data. Then, Mai and Couillet (2018) demonstrate that many standard
machine learning algorithms in fact suffer from being ill-used when dealing with such data. Besides,
given some data matrix X = [

x1 . . . xn
] ∈ Rp×n , Couillet et al. (2021) show that it is possible to get

huge reductions in computational and storage costs with almost no performance loss by puncturing
the data, i.e., keeping only a few elements of X and computing only a few elements of the Gram kernel
matrix K = 1

p X ⊤X . In addition, Liao et al. (2021) demonstrate that, when carefully employed, sparsifi-
cation and quantization of K incur negligible performance loss, while providing a great computational
gain.

In light of these numerous benefits of spectral clustering when dealing with high-dimensional
data, of the practicality of online learning to handle large data streams with limited memory, and of
the promising path shown by random matrix theory towards resource-efficient learning with perfor-
mance guarantees, this chapter introduces an “online spectral learning” algorithm to which we attach
a rigorous performance analysis using random matrix theory.

The algorithm goes as follows: supposing that, due to memory limitations, only a small number L
of data points can be kept in the pipeline, the computation of the n×n Gram kernel matrix is limited to
the elements which are in a radius L around the diagonal of K . This results in the following punctured
kernel matrix model

KL = X ⊤X

p
⊙T

where ⊙ denotes the Hadamard product and T ∈ {0,1}n×n is a Toeplitz mask: Ti , j = 1|i− j |<L . A careful
adaptation of spectral clustering is then performed on KL to retrieve the class information.

In technical terms, the present analysis derives the limiting spectral distribution of KL and ana-
lyzes the behavior of a few isolated eigenvalues (spikes) which carry information (that is, indicators
for the data classes) in their associated eigenvectors. Two new interesting behaviors are observed:
unlike classical spectral clustering, due to the Toeplitz filter, the number of informative spikes can
potentially grow very large even in the case of binary classification. In addition, the eigenvectors are
strongly tainted (in a way “convolved”) by the eigenvectors of the Toeplitz mask, which then requires
some careful post-processing for classification. Our results particularly shed light on how the learning
performance is altered by the dimension of the data and the size of the pipeline, thus providing an
analysis of the performance versus cost trade-off of online learning.

In a nutshell, our main contributions may be listed as follows

• we derive the limiting eigenvalue distribution of KL as p,n,L →+∞ for data arising from a Gaus-
sian mixture model: xi ∼

∑K
k=1πkN (µk , Ip );

• for centered data drawn from a two-class mixture xi ∼N (±µ, Ip ), we show that a phase transi-
tion phenomenon occurs: depending on the signal power ∥µ∥, some eigenvalues of KL isolate
themselves and their eigenvectors carry information about the classes;

• we propose an algorithm to retrieve information from isolated eigenvectors, thus performing
high-dimensional “online spectral clustering”;

• simulations of online spectral clustering on Fashion-MNIST and BigGAN-generated images
confirm the predicted good behavior of the algorithm and support our theoretical findings.

The remainder of this chapter is organized as follows. Section 4.1 introduces the model and a cir-
culant approximation of the Toeplitz mask T , which will be used to derive our main results, presented
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in Section 4.2. The limiting spectral distribution of the kernel matrix is studied first (Theorem 4.6)
and a closer look is then given to the behavior of its isolated eigenvalues and associated eigenvectors
(Theorem 4.8). Based on the previous results, Section 4.3 presents some theoretical considerations
on the classification performance achievable on a data stream and proposes an online kernel spectral
clustering algorithm, which is tested on image clustering tasks. Section 4.4 gives some concluding
remarks.

Proofs and simulations. All proofs are deferred to the appendix. Python codes to reproduce simu-
lations are available in the following GitHub repository https://github.com/HugoLebeau/online
_learning/.

4.1 Online Learning Model and Problem Setting

4.1.1 General Framework

Let X = [
x1 . . . xn

] ∈Rp×n be a collection of n data points of dimension p. They are noisy observa-

tions of K unknown classes whose means are
[
µ1 . . . µK

] def= M ∈Rp×K . Also define the n×K binary
matrix J such that Ji ,k = 1 if xi belongs to class k and 0 otherwise. We make the following assumptions.

Assumption 4.1. The rows of J are independent realizations of a multinomial distribution with one
trial and K outcomes, i.e., the class of xi does not depend on the class of {x j } j ̸=i .

Assumption 4.2 (Non-triviality condition). M is uniformly bounded in spectral norm and does not
vanish asymptotically: 0 < liminf

p→+∞∥M∥ É limsup
p→+∞

∥M∥ <+∞.

Assumption 4.3 (Additive noise model). X = P +N where P = M J⊤ is a deterministic signal matrix
and N is a random standard Gaussian noise matrix with independent entries1.

Remark 4.4. The non-triviality condition (Assumption 4.2) places the work under scenarios of prac-
tical relevance, in the sense that the problem is asymptotically (as p,n,L → +∞) neither too easy
(∥M∥→+∞) nor too hard (∥M∥→ 0). The classification error rate is therefore not expected to vanish
asymptotically.

In the considered online setting, only the L previously seen data points are kept in memory. Thus,
the element Ki , j = 1

p x⊤
i x j of the Gram kernel matrix can only be computed if |i − j | < L. This is repre-

sented by the entrywise application of a Toeplitz mask T = [1|i− j |<L]1Éi , jÉn resulting in

KL = X ⊤X

p
⊙T with T =



1 . . . 1 0
...

. . .
. . .

1
. . . 1

. . .
. . .

...
0 1 . . . 1


.

As standard (offline) spectral clustering is “optimal”2, we argue that spectral clustering on KL

ought to achieve good performance at least for not too small L/n ratios. Our technical goal is thus

1Refer to Section 2.2.3 for a discussion on this assumption.
2In that it performs better than random guess as soon as theoretically possible (Onatski et al., 2013).

69

https://github.com/HugoLebeau/online_learning/
https://github.com/HugoLebeau/online_learning/


Chapter 4. A Random Matrix Analysis of Data Stream Clustering: Coping With Limited Memory
Resources

0 π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

0

10

20
νL(x)
ψk
τk

Figure 4.1: Graph of νL on [0,2π[ (one period) with a plot ofψk = νL( 2kπ
n ) and τk for 0 É k < n (respec-

tively, the eigenvalues of C and T ). Experimental setting: n = 50, L = 10.

to first provide a description of the spectral behavior of KL as p, n and L are large. To this end, we

place ourselves under the regime p,n,L →+∞ with p/n
def= c ∈]0,+∞[ and (2L−1)/n

def= ε ∈]0,+∞[.3

4.1.2 The Circulant Approximation

An important trick to derive our main results lies in the fact that the Toeplitz matrix T can be approx-
imated to some extent by its circulant “version” C = [1|i− j |<L +1|i− j |>n−L]1Éi , jÉn (Gray, 2006). Indeed,
denoting {τk }0Ék<n and {ψk }0Ék<n their respective eigenvalues (which depend on n and L), then for
fixed L and any continuous function f :R→R,

lim
n→+∞

1

n

n−1∑
k=0

∣∣ f (ψk )− f (τk )
∣∣= 0.

Remark 4.5. Keep in mind that, in our case, n and L grow together at the same rate. Therefore, ap-
proximating T by C is reasonable only if ε is sufficiently small.

The core advantage of C is that, unlike T , its eigendecomposition is well-known:

C = F̃ΨF̃∗ with F̃i , j =
1p
n

e−
2iπ
n (i−1)( j−1),

i.e., F̃ is the n×n Fourier matrix, F̃∗ is its Hermitian conjugate andΨ= Diag(ψk )0Ék<n is the diagonal
matrix of eigenvalues. The latter are a sampling of the Dirichlet kernel:

ψk = νL

(
2kπ

n

)
with νL(x) =

sin((2L−1) x
2 )

sin( x
2 )

.

As we will often prefer a real eigendecomposition of C , we introduce the matrix F = ℜF̃ +ℑF̃ . It is a
real orthogonal matrix (F⊤F = F F⊤ = In) and C = FΨF⊤.

In Figure 4.1 are superimposed to the graph of νL the eigenvalues of C and T .4 The τk ’s roughly
follow the graph of νL , as if they were noisy versions of the ψk ’s.

3The provided results are asymptotic for theoretical convenience, modeling the fact that p, n and L are large. The conver-
gence rates being at least O (logn/

p
n) as p,n,L →+∞, they remain valid for a large but finite horizon.

4Although there is a natural order for the eigenvalues of C given byψk = νL ( 2kπ
n ), we use a small trick to get the correspond-

ing order for the eigenvalues of T : after numerically computing them in ascending order, we apply the same permutation that
maps the eigenvalues of C in ascending order to (ψ0, . . . ,ψn−1). This yields the corresponding (τ0, . . . ,τn−1).
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4.2 Main Results

Following the random matrix approach presented in details in Chapter 2, the large dimensional spec-
tral behavior of KL is accessible through an analysis of the resolvent matrix

Q(z) = (KL − zIn)−1

defined for all z ∈ C \ Sp(KL), where Sp(KL) is the spectrum of KL (the set of it eigenvalues). Notably,
the Stieltjes transform of the empirical spectral measure µn = 1

n

∑
λ∈Sp(KL )δλ of KL is the normalized

trace of its resolvent (Proposition 2.6):

mn(z)
def=

∫
R

dµn(t )

t − z
= 1

n
TrQ(z).

The resolvent also encapsulates information about the eigenvectors of KL : given a simple closed
positively-oriented complex contour γ circling around an eigenvalue λ of KL and leaving all the other
eigenvalues outside, − 1

2iπ

∮
γQ(z) dz = uu⊤, where u is a unit eigenvector associated to λ.5

4.2.1 Large Dimensional Spectral Behavior

Our main theorem provides a deterministic equivalent of the resolvent when the Toeplitz mask T is

approximated by its circulant version C , i.e., Q̃(z) = (K̃L − zIn)−1 with K̃L = X ⊤X
p ⊙C .

Theorem 4.6 (Deterministic equivalent of Q̃(z)). Let µ̃n be the empirical spectral distribution of K̃L =
X ⊤X

p ⊙C and m̃n be its Stieltjes transform. Under Assumptions 4.1 to 4.3, there exists a unique (deter-
ministic) Stieltjes transform m̄n satisfying

1+ zm̄n(z)− c
n−1∑
k=0

m̄n(z)ψk
p

1+m̄n(z)ψk
p

= 0, z ∈C\R (4.1)

and such that |m̃n(z)− m̄n(z)| → 0 almost surely as p,n,L → +∞ with p/n
def= c ∈]0,+∞[ and (2L −

1)/n
def= ε ∈]0,+∞[. Moreover, we have the following deterministic equivalent (Definition 2.17) of the

resolvent Q̃(z),

Q̃(z) ↔ Q̄(z)
def=

[
1

m̄n(z)
In + P⊤P

p
⊙C

(
In +m̄n(z)

C

p

)−1]−1

Proof. See Appendix 4.A.

A first observation from Theorem 4.6 is that Q̄(z) is the inverse of a perturbation of the identity
which is not low-rank. This strikingly differs from standard spiked random matrix models (such as
the ones presented in Section 2.2 or in Baik and Silverstein (2006); Benaych-Georges and Nadakuditi
(2011)) where a low-rank perturbation of the identity in the “population” matrix (here P ) usually re-
sults in the presence of only a few isolated eigenvalues in the “sample” matrix (here K̃L). Yet, in most

common settings, a majority of eigenvalues of P⊤P
p ⊙C (In +m̄n(z) C

p )−1 are too small and only a small

number of them causes the appearance of isolated eigenvalues in the spectrum of K̃L .

5In fact, this is only true if λ has multiplicity one. In the general case, the integral equals the projection matrix on the
eigenspace associated to λ (see Section 2.1.2).

71



Chapter 4. A Random Matrix Analysis of Data Stream Clustering: Coping With Limited Memory
Resources

0 1 2 3 4
10−3

10−2

10−1

100
c = 0.5 ε= 0.6

−5 0 5 10 15 20 25

c = 0.03 ε= 0.6

0 2 4 6
10−3

10−2

10−1

100

0 40 80

ESD
LSD

Spike

Figure 4.2: Empirical spectral distribution (ESD) and limiting spectral distribution (LSD) of K̃L . The
y-axis is in log scale. Top: noise only, xi ∼N (0p , Ip ). Bottom: two-class mixture, xi ∼N (±µ, Ip ) with
∥µ∥ = 2. The green dashed lines are the asymptotic positions of the spikes ξk given by Theorem 4.8.
Experimental setting: n = 2500, L = 750 and p = 1250 (left) or p = 75 (right).

Remark 4.7 (Link with Marčenko and Pastur (1967)). In the particular case L Ê n
2 , the mask becomes

C = 1n×n and K̃L = K . Thus, since ψ0 = n and ψk = 0 for 1 É k < n, Equation (4.1) becomes

zc−1m̄2
n(z)− (

1− c−1 − z
)
m̄n(z)+1 = 0

which is the canonical equation defining the Stieltjes transform of the Marčenko-Pastur distribution
(Equation (2.2)). In other words, the closer ε is to 1, the closer to the Marčenko-Pastur distribution is
the limiting spectral distribution of K̃L .

In practice, rather than computing m̃(z) directly from Equation (4.1), it is easier to solve numeri-
cally the following fixed-point equation in η0(z),

η0(z) = p

n

n−1∑
k=0

ψ2
k /p2(

1− z −η0(z)
)+ ψk

p

and deduce m̄n(z) = 1
1−z−η0(z) .

Figure 4.2 displays, in log scale, the empirical spectral distribution of K̃L under two different set-
tings (recall that c = p/n and ε = (2L − 1)/n) with its limiting spectral distribution computed by in-
verting the Stieltjes transform m̄n given by Theorem 4.6. Two kinds of data are presented: noise-only,
xi ∼ N (0p , Ip ), (top row) and a two-class mixture, xi ∼ N (±µ, Ip ), (bottom row). Notice how the
shape of the distribution on the left column resembles the Marčenko-Pastur one (yet, some eigenval-
ues are negative here) while the second distribution has a completely different shape (there even are
multiple bulks) for the same value of ε. This reveals that the parameter c also affects the closeness of
the limiting spectral measure to the Marčenko-Pastur distribution. Also note that, under the two-class
mixture setting, more than one isolated eigenvalue pops out of the limiting support. It now remains to
give a close look to their associated eigenvectors to understand how to exploit the latter in a spectral
clustering perspective.

72



4.2. Main Results

4.2.2 Phase Transition and Spike Behavior

In this section, we focus back on our original clustering objective. We consider two classes C +,C −

whose means are ±µ, i.e., P = µ j⊤ with ji = +1 if xi ∈ C + and ji = −1 if xi ∈ C −. This corresponds
to a two-class mixture with globally empirically centered data. Consistently with the previous setting,
M = [+µ −µ]

and Ji ,· =
[
1{xi∈C +} 1{xi∈C −}

]
.

Because of the rank-one structure, using the relation M ⊙ab⊤ = [Diag a]M[Diagb], the determin-
istic equivalent of the resolvent given in Theorem 4.6 has a much simpler expression:

Q̄(z) = [
D j F

][ 1

m̄n(z)
In +

∥∥µ∥∥2Ψ

p

(
In +m̄n(z)

Ψ

p

)−1]−1[
D j F

]⊤
where D j = Diag j is the diagonal matrix induced by the vector j . Now, Q̄(z) no longer involves a
Hadamard product and we already have its eigendecomposition since Ψ

p (In + m̄n(z)Ψp )−1 is diagonal
and D j F is orthogonal. Note that the columns of D j F are simply the columns of F with their signs
switched at coordinates i such that xi ∈C −.

With a deeper analysis of the resolvent Q̄(z), the following theorem provides the position of the
isolated eigenvalues and the shape of their associated eigenvectors.

Theorem 4.8 (Spike eigenvalues and eigenvectors). For all integer k ∈ {0, . . . ,n −1}, define

ξk
def=

(∥∥µ∥∥2 +1
)ψk

p

(
1+ p

n

n−1∑
l=0

[(∥∥µ∥∥2 +1
)ψk

ψl
−1

]−1
)

and ζk
def=

∥∥µ∥∥2∥∥µ∥∥2 +1

(
1− p

n

n−1∑
l=0

[(∥∥µ∥∥2 +1
)ψk

ψl
−1

]−2
)

.

Assuming Conjecture 4.32 on the global behavior of the spectrum presented and discussed in Appendix
4.B.1 is verified, if limy↓0ℑm̄n(ξk + iy) = 0 (for p,n,L large enough) and ψk ̸= 0 then

• almost surely, ξk is the asymptotic location of an eigenvalue of K̃L ;

• the matrix Uk whose columns gather all the eigenvectors of K̃L whose associated eigenvalues con-
verge almost surely to ξk satisfies

UkU⊤
k ↔ ζk

[
D j F

]
∆k

[
D j F

]⊤
where D j = Diag j and∆k = Diag

(
1{ψk=ψl }

)
0Él<n .

Proof. See Appendix 4.B.

To better understand this theorem, recall that, after Theorem 4.6, we predicted the presence of a
few isolated eigenvalues in the spectrum of K̃L . Theorem 4.8 details this assertion by specifying the
positions ξk of the spikes and their alignments ζk with the signal. The quantity ζk can really be seen
as an “indicator of spike” as it tells whether an isolated eigenvalue exists for index k (if ζk > 0) and, if
it does, the closer ζk is to 1, the better is the “quality” of the information carried in the corresponding
eigenvector, i.e., the greater is the signal-to-noise ratio (see Figure 4.3).

Another difference with classical spiked random matrix models is that each asymptotic spike ξk ,
which has the same multiplicity as the population spike ψk , is rarely simple. In fact, the only simple
eigenvalues of C are ψ0, and ψn/2 if n is even. However, for finite values of p, n and L, the corre-
sponding eigenvalues of K̃L are not necessarily degenerate (with probability one, they are not), but
they have the same limit: ξk = ξl for all l such that ψk =ψl . The number of columns of Uk is equal to
the cardinality of {l |ψk =ψl }, which is the dimension of the limiting eigenspace associated to ξk .
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Figure 4.3: Asymptotic alignment [ζk ]+ versus ∥µ∥ for three values of k. The empirical alignment
is computed as the mean of 〈v0,u0〉2 on 10 realizations (error bars indicate the standard deviation).
Experimental setting: n = 2500, p = 75, L = 750.

One also notices from Theorem 4.8 that the number of isolated eigenvalues could potentially grow
very large as ∥µ∥ increases. Indeed, the value of ∥µ∥ at which ζk changes sign (i.e, when one or more
eigenvalues isolate themselves from the bulk around ξk at the phase transition) is given by

1− p

n

n−1∑
l=0

[(∥∥µ∥∥2 +1
)ψk

ψl
−1

]−2

= 0. (4.2)

Therefore, potentially any eigenvalue could leave the bulk, but this is prevented by the non-triviality
condition (Assumption 4.2): ∥µ∥ =O (1). Moreover, since most ψk ’s are small (see Figure 4.1), the cor-
responding ξk ’s fall into the bulk and there are only a few spikes visible in practice. Yet, it is common
to see negative isolated eigenvalues (see Figure 4.2). Indeed, since ψk can be negative, there can be
spikes on both sides of the spectrum.

When positive, the quantity ζk is the asymptotic alignment between the empirical eigenvector6 uk

and the corresponding eigenspace associated with ξk , i.e.,

u⊤
k

[
D j F

]
∆k

[
D j F

]⊤uk
a.s.−−−−−−−−→

p,n,L→+∞
ζk .

Thus, ζk measures the quality of the empirical eigenvector uk . In particular, with k = 0, this simply be-
comes 〈v0,u0〉2 → ζ0 almost surely as p,n,L →+∞. Indeed, ξ0 has multiplicity one and its eigenspace
is spanned by v0 = [D j F ]·,0 = 1p

n
j . Said differently, u0 is a noisy version of the vector v0 and the noise

level is indicated by 0 É 1−ζ0 É 1. In fact, each vk = [D j F ]·,k is the vector j — the information sought
— modulated by the k-th Fourier mode (recall that Fourier modes are the eigenvectors of C ).

Figure 4.3 displays the value of [ζk ]+ = max(ζk ,0) as a function of ∥µ∥ for the setting correspond-
ing to the bottom right part of Figure 4.2. The empirical alignment of the dominant eigenvector u0

with v0 = 1p
n

j fits perfectly with the curve of [ζ0]+ predicted by Theorem 4.8. Moreover, notice the

interesting fact that ξ1 has several phase transitions: as ∥µ∥ grows, it appears once, then disappears
and appears once again! This is due to the limiting spectral distribution having several bulks under

6Note that, here, we use a different ordering of the eigenvalues and eigenvectors than the one used in the previous chapters.
Previously, we considered the non-increasing order of eigenvalues (λ1(K ) Ê λ2(K ) Ê . . .). In this chapter, it is instead more
“natural” to consider the order induced by the ψk ’s. That is, uk is the eigenvector corresponding to the k-th spike, induced by
the k-th Fourier mode.
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Figure 4.4: Same as Figure 4.2 but with a Toeplitz mask T instead of a circulant mask C . Predictions
(LSD and spike positions) are made with ψk replaced by τk and Fourier modes F replaced by G , an
eigenbasis of T .

this setting (see Figure 4.2). The first time this spike appears, it is located between two bulks. It then
goes through the rightmost bulk (so it is no longer an isolated eigenvalue thus ζ1 É 0), and finally goes
out on the right edge of the distribution.

This last result may sound awkward and possibly testify of the suboptimality of our approach
(when the signal-to-noise ratio increases, the information attached to some eigenvectors vanishes).
This conclusion is not so immediate though, as the classification information is still contained within
other eigenvectors which, as ∥µ∥ increases, do carry increasingly clearer information.

4.2.3 Discussion on the Circulant Approximation

The approximation of the Toeplitz mask T by the circulant mask C used in Theorem 4.6 and Theorem
4.8 can be seen as a way to remove undesired edge effects, whose size is governed by L (notice that
removing the first and last L −1 rows and columns of C and T yields the same two Toeplitz matrices).
If L is chosen small compared to n (i.e., ε is small), edge effects are expected to be negligible and the
previous results can plausibly be extended to the original setting, as observed empirically.

To adapt the previous results from C to T , one only needs to change the eigenvalues and eigen-

vectors, i.e., replace ψk by τk — the eigenvalues of T — and replace F by G
def= [

g0 . . . gn−1
]
, an

eigenbasis of T .
Very precise predictions on the original model can be made with these simple changes. Figures 4.4

and 4.5 compare simulations with a Toeplitz mask and the predictions of Theorem 4.6 and Theorem
4.8 with the ψk ’s replaced by the τk ’s and F replaced by G .

Apart from extra mass around 0 in the second setting (c = 0.03 and ε = 0.6), the shape of the lim-
iting spectral distribution is very well predicted, as well as the position of the isolated eigenvalues.
Empirical alignments 〈v0,u0〉2 also fit well the predicted curve. Note that, contrary to the circulant
mask, the eigenvalues of T are mostly simple (see Theorem 5 of Trench (1994)). Thus, we also repre-
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Figure 4.5: Same as Figure 4.3 but with a Toeplitz mask T instead of a circulant mask C . Alignment
curves are computed with ψk replaced by τk and Fourier modes F replaced by G , an eigenbasis of T .

sent [ζn−1]+ in Figure 4.5, which was confounded with [ζ1]+ in Figure 4.3 (ψ1 =ψn−1 but τ1 ̸= τn−1).

4.3 Online Spectral Clustering of Large Data

The previous results find direct applications to the online clustering of high-dimensional data streams.

4.3.1 Online Clustering Algorithm

Let us detail a clustering algorithm based on our previous results. We now use the banded version of

the kernel matrix: KL = X ⊤X
p ⊙T (the circulant mask is only useful for theoretical considerations) and

recall the notation of the eigenbasis of T :
[

g0 . . . gn−1
] def= G .

We consider a data stream of length T (possibly infinite). At each time step, a new vector xt arrives
in the pipeline while xt−L is discarded (only the last L points are kept). The kernel matrix is then
updated: [

K (t )
L

]
i , j

= 1

p
x⊤

t−n+i xt−n+ j 1|i− j |<L .

Remark 4.9 (Memory management policy). A different memory management policy — not restricted
to only choosing the previous L points to keep in memory — could be considered. However, we found
that having points spread over a greater period of time (i.e., discarding newer ones to keep older ones)
does not bring more information. To get a grasp, remark that the mean leaving time of the pipeline
cannot be different than L, whatever the policy.

Remark 4.10 (Choice of n,L and eigenvector localization). It is important to emphasize that n is not
the length of the data stream (given by the newly-introduced parameter T Ê n). As KL has size n ×n,
one can “only” classify the last n points of the stream, even when discarded from the length-L memory
(older points are no longer classified though). The parameters n and L can be chosen by the user,
accounting for memory limitations (O (Lp +Ln − 1

2 L(L −1)) space is needed to store the data and the
kernel matrix) and performance considerations, which we discuss in Section 4.3.2 below. Moreover, as
the graph associated to KL becomes sparser (ε→ 0), its eigenvectors tend to localize (Hata and Nakao,
2017), making classification more challenging. Therefore, ε = (2L −1)/n should be neither too large
(for the circulant approximation to hold) nor too small (to avoid eigenvector localization).
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As per standard kernel spectral clustering, we use the dominant eigenvectors of K (t )
L to estimate

the classes. The last n points of the stream are classified at each time step so each point is classified
n times. Then, the final class estimate can be chosen by a majority vote. However, standard cluster-
ing algorithms such as K -means — which are usually employed on spectral embeddings — perform
poorly here, because of the particular shape of the eigenvectors caused by the Toeplitz mask7 (see
Figure 4.7).

Remark 4.11. The eigenvectors of K (t )
L can be quickly computed at a low cost with a warm start of the

power iteration algorithm from the previously computed eigenvectors of K (t−1)
L .

In a binary setting with globally centered data, classification can be performed using only the dom-
inant eigenvector u(t )

0 of K (t )
L . Relying on the alignment of u(t )

0 with v (t )
0 = g0 ⊙ j (t ) (Theorem 4.8) and

the fact that the coordinates of g0 have constant sign, the class of xt−n+i can be estimated from the

sign of
[

u(t )
0

]
i
. This online clustering procedure is summarized in Algorithm 1.

Algorithm 1: Online Kernel Spectral Clustering (binary)

Output: class estimators {Ĉ (t )
+ ,Ĉ (t )

− }nÉtÉT

for t = 1 to T do
Get a new point xt into the pipepline

Update K (t−1)
L into K (t )

L
if t Ê n then

u(t )
0 ← PowerIteration(K (t )

L ,u(t−1)
0 )

Ĉ (t )
± ← {xt−n+i | [u(t )

0 ]i ≷ 0}
end

end

The careful reader may wonder here whether the performance of the algorithm could be improved
by using eigenvectors other than just the dominant one. In fact, the dominant eigenvector already
contains all the information that can be retrieved. Since the classification is performed very easily with
the signs of the coordinates in the binary setting xi ∼ N (±µ, Ip ), the use of other spike eigenvectors
does not bring more information. However, in a general setting xi ∼

∑K
k=1πkN (µk , Ip ), we no longer

have an alignment result such as Theorem 4.8 and it can become much harder to distinguish the
classes from just the dominant eigenvector. In this case, the combination of several spike eigenvectors
can make the classification easier. The interested reader is referred to Appendix 4.C, where we propose
a — more complex and heuristic — online spectral clustering algorithm capable of handling K -class
mixtures and test it on Fashion-MNIST images.

Note that these algorithms can easily be adapted to a setting where more than one vector xt arrives
at each time step (and this quantity does not need to be constant in time). This will nonetheless mod-
ify the structure of the kernel matrix KL and additional work may be necessary to recover theoretical
grounds.

4.3.2 Performance Versus Cost Trade-Off in Online Learning

One important question remains open in what we have presented so far: how to chose n and L? While
the dimension p of the data is fixed by the problem considered, users are free to chose n and L as they
wish. However, since we are concerned with memory-constrained settings, we introduce the memory

scale M
def= Lp+Ln− 1

2 L(L−1), which decomposes into the memory allocated to the L data points kept

7The dominant eigenvector of T , for example, is not constant, contrary to the first Fourier mode with the circulant mask.
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in the pipeline (Lp) plus the memory allocated to the banded kernel matrix K (t )
L (Ln− 1

2 L(L−1) due to
symmetry). Given that M and p are fixed, we seek the optimal way to chose n and L.

Recall Equation (4.2) defining the minimal value of ∥µ∥2 for a positive alignment between uk and
vk . Taking k = 0, notice that,

ψ0

ψl
= 2L−1[

sin((2L−1) lπ
n )

sin( lπ
n )

] =
sinc( lπ

n )

sinc((2L−1) lπ
n )

with sinc x = sin x

x

and we have the following result.

Proposition 4.12. As p,n,L →+∞,
⌊n/2⌋∑
l=1

[(∥µ∥2 +1
)ψ0

ψl
−1

]−2

=
⌊n/2⌋∑
l=1

[
∥µ∥2 +1

sinc((2L−1) lπ
n )

−1

]−2

+o(1).

Proof. See Appendix 4.E.

Hence, as p,n,L →+∞, the position of the first phase transition is solution to

1− c

 1∥∥µ∥∥4 +2
+∞∑
l=1

[ ∥∥µ∥∥2 +1

sinc(εlπ)
−1

]−2
= 0

where the term 1
∥µ∥4 stands for l = 0 and the sum

∑+∞
l=1 must appear twice to account for “l small”

and “n − l small” (this can be understood by the fact that ψl
ψ0

behaves like sinc(εlπ) for l É n
2 and like

sinc(ε(n − l )π) for l Ê n
2 , see Figure 4.1). This shows that, asymptotically, the position of the phase

transition depends only on the two parameters c and ε.
The constraint M = Lp + Ln − 1

2 L(L − 1) can be translated into Lp = αM and Ln − 1
2 L(L − 1) =

(1−α)M where α ∈]0,1[ represents the portion of memory dedicated to the pipeline while 1−α is the
portion of memory dedicated to the kernel matrix. The parameters c and ε can then be expressed as

c = [ 1−α
α + 1

2αr ]−1 and ε = 2αr [ 1−α
α + 1

2αr ]−1 where we have introduced r
def= M/p2 representing the

amount of memory “normalized” by the dimensionality of the data p2.
Therefore, the position of the phase transition can be written as a function of α and r as well. Let

φ(α,r ) be this function. Since the value of r is already fixed by the problem considered, α is the only
free parameter. The best way to chose it is so that φ(α,r ) is minimal. Indeed, the earlier the phase
transition, the better the alignment between u0 and v0 at a given signal-to-noise ratio ∥µ∥2. Thus, we

set α⋆ = min0<αÉᾱφ(α,r ) where ᾱ
def= −1+p2r+1

r < 1. The constraint α É ᾱ is the translation of L É n.
The value of α⋆ can be numerically computed and the corresponding optimal values of n and L can
be recovered: n⋆ = 1−α⋆

α⋆
p + 1

2 (α⋆M
p −1) and L⋆ = α⋆M

p .
The top panel of Figure 4.6 shows the value of α⋆ as a function of r (in log scale). It is instructing

to see that α⋆ is monotonically decreasing from 1 to 0 as r grows. This means that, under very restric-
tive memory settings, a larger part of it should be dedicated to the storage of data while, as memory
limitations become less constraining, a larger portion should be devoted to the storage of KL . As r
becomes large, most of the memory should be occupied by the kernel matrix rather than the data
pipeline (“small” L but big n).

The bottom panel displays the position of the phase transition as a function of r when n and L are
chosen in the previously-introduced optimal way. It is compared with the phase transitions of batch
clustering and offline clustering.

• “Batch clustering” is the naive approach consisting in standard spectral clustering with an n′×n′

kernel matrix such that n′p+ n′(n′+1)
2 = M . Recalling Theorem 2.34, the phase transition happens

when ∥µ∥2 =
√

p/n′ and, given the memory constraint, this is 1p
−1+p2r+1

+o(1).
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Figure 4.6: Top: α⋆ against r = M/p2. This represents the amount of memory L⋆p dedicated to the
pipeline depending on the total available memory. Bottom: Phase transition position of the domi-
nant eigenvector of the banded Gram kernel matrix KL⋆ when (n,L) = (n⋆,L⋆) (green curve) and of
the standard n′×n′ kernel matrix when performing batch spectral clustering with the corresponding
available memory (red curve). Non-trivial clustering is only possible above the phase transition. The
orange density map gives the predicted online clustering accuracy (with KL⋆ ) depending on the val-
ues of r and ∥µ∥2. The black dashed line shows the phase transition corresponding to the n⋆×n⋆ full
Gram kernel matrix (not achievable in an online setting).

• “Offline clustering” corresponds to the best achievable performance with the same ratio p/n⋆
but without memory constraint, i.e., with a full n⋆ × n⋆ kernel matrix (L = n⋆). Hence, the
position of the phase transition is simply

√
p/n⋆ = [ 1−α⋆

α⋆
+ 1

2α⋆r ]−1/2 +o(1).

Below the green curve, ζ0 É 0, no eigenvalue escapes the bulk and non-trivial clustering is impossi-
ble. After the phase transition, ζ0 > 0 and the closer it is to 1 the closer u0 is to v0 = 1p

n
j . Following The-

orem 3.4, the fluctuations of the entries of u0 are asymptotically Gaussian and pairwise independent
with mean ±

√
[ζ0]+/n and variance (1−[ζ0]+)/n. Thus, the asymptotic classification accuracy is given

by Φ
(√

[ζ0]+
1−[ζ0]+

)
, where Φ is the Gaussian cumulative distribution function: Φ(x) = 1p

2π

∫ x
−∞ e−

t2
2 dt .

This is represented by the orange density map.
From Figure 4.6, we see that, as r grows, i.e., as memory becomes less restrictive, the phase tran-

sition position of online spectral clustering reaches the optimal threshold ∥µ∥2 =p
c under which no

information can be recovered (regardless of the method used and the data available). This is expected,
since increasing the memory size allows to encapsulate more information. Still, the green curve spec-
ifies how memory limitations impair performance. Although we lack some information-theoretic re-
sult, the distance between the green curve and the black dashed line yields an upper bound on the
difference between the performances of our method and an optimistic optimum (which, as wee see,
can get very close to 0). Moreover, with r fixed (fixed memory size), the classification error vanishes as
∥µ∥ increases (the signal becomes more powerful).

Our method performs better (i.e., the phase transition occurs earlier) than a naive approach based
on standard spectral clustering performed by batches, in particular under very restrictive memory
settings. It is also able to classify the n⋆ previous points at any time, although n⋆−L⋆ of them have
already left memory!
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Figure 4.7: Left: Examples of BigGAN-generated images of collie dogs and tabby cats (top) and
Fashion-MNIST images from the classes Coat and Ankle Boot (bottom). Middle: Illustration of the
banded Gram kernel matrix K (t )

L⋆
with the corresponding values of n⋆ and L⋆. Right: Entries of the

dominant eigenvector u(t )
0 of K (t )
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with each entry colored according to its class (ground truth).

4.3.3 Simulations on Real-World Images

We illustrate our findings with two applications on image clustering tasks. Firstly, we apply Algo-
rithm 1 on globally centered and scaled VGG-features (Simonyan and Zisserman, 2015) of randomly
BigGAN-generated images (Brock et al., 2019) of tabby cats and collie dogs (see Figure 4.7). The vec-
tors thus generated have dimension p = 4096 and simulate a stream of length T = 20000 with evenly
likely cats and dogs. This experiment is performed twice: once on the original computed VGG-features
and once on the same features perturbed with additive Gaussian noise. In addition, our algorithm is
applied to a stream made of T = 14000 centered raw images from the Fashion-MNIST dataset (Xiao
et al., 2017). Their dimension is p = 784 and we want to discriminate coat versus ankle boot in an
online fashion. In both cases, n and L are chosen in order to minimize the position of the phase tran-
sition given a fixed amount of available memory M . For the BigGAN dataset, we take M = 1000000
(4000 kB8) and, for the Fashion-MNIST data, we take M = 24000 (96 kB). This is a realistic choice of
parameters which can easily be run on most standard laptops. At each time step, L⋆ images are kept
in memory and, from the n⋆×n⋆ kernel matrix K (t )

L⋆
, we are able to classify the previous n⋆ images.

The shape of the dominant eigenvector u(t )
0 at a certain time t during the execution of the algo-

rithm is depicted in Figure 4.7. We clearly see a separation between the classes. For both settings,
Figure 4.8 plots the mean classification error at t0 +∆t of a data point seen at t0 (recall that a data
point arriving at t0 is classified at each time step between t0 and t0+n−1), as well as the overall classi-

8This assumes that each floating-point number is stored on 32 bits.

80



4.3. Online Spectral Clustering of Large Data

0 200 400 600

4.08%

4.1%

4.12%

Delay ∆t

C
la

ss
ifi

ca
ti

o
n

er
ro

r

BigGAN

0 200 400 600

8%

9%

10%

Delay ∆t

BigGAN + noise

0 20 40 60 80

3.25%

3.3%

Delay ∆t

Fashion-MNIST

Figure 4.8: Classification error against delay ∆t on BigGAN-generated images (left and middle) and
Fashion-MNIST images (right). This is the mean classification error at time t0 +∆t of a point arrived
at t0. The green dashed line indicates the overall classification error when the class is chosen by a
majority vote. The black dotted line is the classification error obtained with a T ×T offline kernel
spectral clustering. Experimental setting: See Figure 4.7.

Limited memory No memory constraint
Stream Memory Online Batch Sketching KSC Sketching
BigGAN 4000 kB 4.10 4.07 36.14 4.07 −
BigGAN + noise 4000 kB 8.01 10.49 49.68 5.37 −
Fashion-MNIST 96 kB 3.31 3.38 14.29 3.25 5.36

Table 4.1: Classification error (%) on three image clustering tasks. KSC stands for kernel spectral clus-
tering. Sketching on the whole BigGAN-generated dataset is too memory-demanding for a regular
laptop.

fication error obtained after a majority vote (green dashed line), to be compared with the classification
error obtained with a standard T ×T offline kernel spectral clustering for which optimality results are
known (black dotted line). Except in the setting where noise is added to the VGG-features of BigGAN-
generated images, the mean classification error remains constant with ∆t , thus showing that our al-
gorithm does not lose any discriminative power between t0 and t0+n−1. Moreover, the classification
performances of our algorithm are very close to those of the standard (offline and costly) spectral clus-
tering but require much less memory resources: O (Lp+Ln− 1

2 L(L−1)) against O (T p+ 1
2 T (T +1)) space

for the storage of the data and the kernel matrix. The “BigGAN + noise” experiment shows an interest-
ing behavior: in a difficult (very noisy) setting, the lowest clustering error of a data point arrived at t0

is achieved at t ≈ t0+ n⋆
2 . This can be understood as a side effect of the U-shaped eigenvector used for

the clustering (see Figure 4.7). Yet, this does not impair the overall performance when the clustering
is performed by a majority vote over each time step (the green dashed line is near the bottom of the U
in Figure 4.8).

In Table 4.1, we compare the performance of our algorithm (Online), batch clustering and sketch-
ing (Gribonval et al., 2021) with limited memory and these three clustering tasks. As a reference,
we also give the performance of standard spectral clustering with the Gram kernel matrix (KSC) and
sketching achieved at once on the whole length-T dataset. Sketching is a general procedure which
consists in computing a sketch z = 1

T

∑T
t=1Φ(xi ) ∈Cm with a transformationΦ : x 7→ exp(−iΩ⊤x) where

Ω is a p×m matrix of random frequencies and exp is applied entrywise (this is not the matrix exponen-
tial). The sketch can easily be computed in an online fashion and the clustering performed directly
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from it, see Gribonval et al. (2021) for details. However, this approach requires the storage of the large
matrixΩ and the size m of the sketch is therefore constrained by M = m+pm ⇐⇒ m = M/(p+1) (this
is m = 244 for BigGAN images and m = 30 for Fashion-MNIST images). Hence, most of the memory is
dedicated to the storage of a non-informative matrix, which explains the relatively poor results of this
approach in our experiments9.

On the BigGAN-generated stream of images, our online spectral clustering algorithm has the same
performance as batch clustering, which is also the same performance as spectral clustering on the
entire dataset. This problem is in fact “too easy” and the addition of noise exposes real differences
in the performance (it places us closer to the phase transition by reducing the signal-to-noise ratio).
Similar differences can be observed on the raw Fashion-MNIST dataset. These observations are in line
with our predictions illustrated in Figure 4.6.

4.4 Concluding Remarks

Learning on large amounts of high-dimensional data is a challenging task requiring either large com-
putational resources or efficient data-processing algorithms. This chapter is concerned with the sec-
ond option: leveraging tools from random matrix theory and the circulant approximation of Toeplitz

matrices, the analysis of the “banded kernel matrix” KL = X ⊤X
p ⊙T has revealed interesting behav-

iors of its limiting spectrum. Notably, it can exhibit multiple bulks, with isolated eigenvalues on both
sides, and even between the bulks. The characterization of the alignments of the corresponding iso-
lated eigenvectors with the (right) singular subspace of the perturbation P displays a phase transition
phenomenon: after a threshold value on the strength of the perturbation, isolated eigenvalues appear
in the spectrum of KL and their eigenvectors carry the sought information “convolved” with Fourier
modes. This random matrix analysis finds direct applications to the study of online data stream clus-
tering. Under limited memory resources, we have shown how to design the optimal banded kernel
matrix and specified the accuracy of our approach. Near-optimal performances on high-dimensional
data can be achieved with memory-limited systems using our online kernel spectral clustering algo-
rithm and simulations on image classification tasks support our findings.

Besides introducing a new algorithm for online clustering, these results also pave the way towards
large-dimensional learning on data streams with theoretical guarantees. This also raises several in-
teresting questions to further strengthen these theoretical grounds. Firstly, our results on the per-
formance of online kernel spectral clustering rely on the dominant eigenvector of KL which, under
the circulant approximation, is known to have asymptotic Gaussian fluctuations as per our results in
Chapter 3. However, similar guarantees on other eigenvectors than the dominant one are not straight-
forward because of their particular intrication with Fourier modes. Then, we still miss an information-
theoretic result of optimality for the proposed approach (which exists in the standard unbanded case),
this key direction requires further investigation — a conceivable approach is through the techniques
deployed by Nguyen and Couillet (2023) in the context of multitask learning. Finally, our analysis is
performed under an i.i.d. assumption on the data (Assumption 4.1) which rules out the trickier but
realistic situation where several points of the same class could arrive together in a batch and the data
distribution could change over time. It would be interesting to know how our random matrix tools
adapt to this kind of situation.

9Still, numerical methods exist to reduce this memory cost (Chatalic et al., 2018) and the purpose of sketching is not restricted
to clustering so it should not be too severely judged in the light of these results!
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4.A Proof of Theorem 4.6

4.A.1 Preliminary Results

Firstly, let us state a few useful results for the upcoming proof.

Singular Value Inequalities

Proposition 4.13 (Bai and Silverstein, 2010, Corollary A.12). For all n ×n real (or complex) matrix A,
|Tr A| É∑n

i=1 si (A).

Proposition 4.14 (Bai and Silverstein, 2010, Theorem A.14). Let A and B be two real (or complex)
matrices of size p ×q and q × r respectively. For any integer k ∈ {1, . . . ,min(p, q,r )},

k∑
i=1

si (AB ) É
k∑

i=1
si (A)si (B ).

Hadamard Product Inequalities

Nota Bene. The (standard) matrix product has priority over the Hadamard product, i.e., A ⊙BC =
A ⊙ (BC ).

We will often need to bound from above the spectral norm of Hadamard products. Thus, we state
the following submultiplicativity property.

Proposition 4.15 (Bai and Silverstein, 2010, Theorem A.19). Let A and B be two real (or complex)
matrices of size p ×n. For any integer k ∈ {1, . . . ,min(p,n)},

k∑
i=1

si (A ⊙C ) É
k∑

i=1
si (A)si (C ).

Corollary 4.16. ∥A ⊙B∥ É ∥A∥∥B∥.

As we will be mostly interested in the case where B =C (the circulant mask) and ∥C∥ = 2L −1, the
upper bound ∥A ⊙C∥ É (2L −1)∥A∥ is not satisfying (because L grows as fast as n). Instead, we have
the following upper bound.

Proposition 4.17. There exists a constant α > 0 such that, for all real n × n matrix A, ∥A ⊙C∥ É
α logn∥A∥.

Proof. We use the complex eigendecomposition C = F̃ΨF̃ where F̃i , j = 1p
n

e−
2iπ
n (i−1)( j−1) and Ψ =

Diag(ψ0, . . . ,ψn−1) with ψk = νL( 2kπ
n ) (see Section 4.1.2). We can write A ⊙C as

A ⊙C =
n−1∑
k=0

ψk A ⊙ F̃·,k F̃∗
·,k =

n−1∑
k=0

ψk Diag(F̃·,k )A Diag(F̃·,k )∗

using the useful relation A ⊙ab∗ = Diag(a)A Diag(b)∗. Notice that ∥Diag(F̃·,k )∥2 = maxi∈[n]|F̃i ,k |2 = 1
n

therefore

∥A ⊙C∥ É
(

1

n

n−1∑
k=0

∣∣ψk
∣∣)∥A∥.
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The rest of the proof consists in showing that 1
n

∑n−1
k=0 |ψk | = O (logn). From the symmetry of νL ,

1
n

∑n−1
k=0 |ψk | = 2

n

∑⌊n/2⌋
k=1 |ψk |+O (1). Moreover, notice that

νL(x)−cos(Lx) =
sin((2L−1) x

2 )

sin( x
2 )

−cos(Lx) = sin(Lx)cot
( x

2

)
and 0 < 2

x −cot( x
2 ) < 2

π for all x ∈]0,π[, therefore νL(x) = 2 sin(Lx)
x +O (1) for all x ∈]0,π[. Hence,

1

n

n−1∑
k=0

∣∣ψk
∣∣= 2

n

⌊n/2⌋∑
k=1

∣∣ψk
∣∣+O (1) = 4

n

⌊n/2⌋∑
k=1

∣∣∣∣∣sin(L 2kπ
n )

2kπ
n

∣∣∣∣∣+O (1) É 2

π

⌊n/2⌋∑
k=1

1

k
+O (1) =O (logn).

In fact, we can state the following more general statement.

Proposition 4.18. n−q∥A ⊙C q+1∥ É (α logn)q+1∥A∥ for all integer q Ê 0.

Proof. We proceed similarly to the proof of Proposition 4.17.

1

nq

∥∥A ⊙C q+1∥∥= 1

nq

∥∥∥∥∥n−1∑
k=0

ψ
q+1
k Diag(F̃·,k )A Diag(F̃·,k )∗

∥∥∥∥∥
É

(
1

nq+1

n−1∑
k=0

∣∣ψk
∣∣q+1

)
∥A∥ É

(
1

n

n−1∑
k=0

∣∣ψk
∣∣)q+1

∥A∥ É (
α logn

)q+1∥A∥.

Finally, this last inequality will be useful as well.

Proposition 4.19. ∥A ⊙C·,i C j ,·∥ É ∥A∥ for all i , j ∈ [n].

Proof. This is an elementary consequence of the relation A ⊙ab⊤ = Diag(a)A Diag(b),∥∥A ⊙C·,i C j ,·
∥∥=

∥∥Diag(C·,i )A Diag(C j ,·)
∥∥É ∥A∥

since ∥Diag(C·,i )∥ = ∥Diag(C j ,·)∥ = 1.

4.A.2 Derivations with Stein’s Lemma

Let us define the resolvent of the kernel matrix with the circulant mask,

Q̃(z) =
(

X ⊤X

p
⊙C − zIn

)−1

for all z ∈C\ Sp

(
X ⊤X

p
⊙C

)
.

As usual, we will often drop the dependence in z and simply write Q̃ instead of Q̃(z) to ease the nota-
tion.

In this section, we prove the two results gathered in the following proposition.

Proposition 4.20. For all A ∈Rn×n ,

E

[(
N⊤X

p
⊙ A

)
Q̃

]
= E[(A ⊙ In)Q̃

]−E[(
1

p
A

(
Q̃ ⊙ X ⊤X

p

)
C ⊙ In

)
Q̃

]
−E

[
1

p

(
(Q̃ ⊙ A)

X ⊤X

p
⊙C

)
Q̃

]
, (4.3)

E

[(
P⊤N

p
⊙ A

)
Q̃

]
=− 1

p
E

[(
P⊤X

p
⊙ A(Q̃ ⊙ In)C

)
Q̃

]
− 1

p
E

[(
P⊤X

p
(Q̃ ⊙C )⊙ A

)
Q̃

]
. (4.4)
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The proofs of Equations (4.3) and (4.4) rely on Stein’s lemma (Lemma 2.18). Hence, we need the
following expression for the derivatives of the resolvent Q̃ .

Lemma 4.21 (Derivatives of the resolvent).

∂Q̃a,b

∂Nc,d
=− 1

p

n∑
e=1

(
Q̃a,d Xc,eCd ,eQ̃e,b +Q̃a,e Xc,eCe,dQ̃d ,b

)
.

Proof. We have ( X ⊤X
p ⊙C − zIn)Q̃ = In therefore ∂Q̃ =−Q̃∂( X ⊤X

p ⊙C )Q̃ .

∂Q̃a,b

∂Nc,d
=− 1

p

n∑
e=1

n∑
f =1

Q̃a,e
∂

∂Nc,d

[
X ⊤X ⊙C

]
e, f Q̃ f ,b

=− 1

p

n∑
e=1

n∑
f =1

Q̃a,e
∂

∂Nc,d

[
p∑

g=1
Xg ,e Xg , f Ce, f

]
Q̃ f ,b

=− 1

p

n∑
e=1

n∑
f =1

p∑
g=1

Q̃a,e
(
δg ,cδe,d Xg , f Ce, f +Xg ,eδg ,cδ f ,dCe, f

)
Q̃ f ,b

=− 1

p

(
n∑

f =1
Q̃a,d Xc, f Cd , f Q̃ f ,b +

n∑
e=1

Q̃a,e Xc,eCe,dQ̃d ,b

)

=− 1

p

n∑
e=1

(
Q̃a,d Xc,eCd ,eQ̃e,b +Q̃a,e Xc,eCe,dQ̃d ,b

)
.

Proof of Equation (4.3)

We use successively Stein’s lemma (Lemma 2.18) and Lemma 4.21.

E

[(
N⊤X

p
⊙ A

)
Q̃

]
i , j

= 1

p

p∑
r=1

n∑
s=1

E
[
Nr,i Xr,s Ai ,sQ̃s, j

]
= 1

p

p∑
r=1

n∑
s=1

E

[
∂Xr,s

∂Nr,i
Ai ,sQ̃s, j +Xr,s Ai ,s

∂Q̃s, j

∂Nr,i

]

= E[Ai ,i Q̃i , j
]− 1

p2

p∑
r=1

n∑
s=1

E

[
Xr,s Ai ,s

n∑
t=1

(
Q̃s,i Xr,t Ci ,t Q̃t , j +Q̃s,t Xr,t Ct ,i Q̃i , j

)]
= E[Ai ,i Q̃i , j

]− 1

p2 E
[
((Q̃ ⊙ A)X ⊤X ⊙C )Q̃

]
i , j −

1

p2 E
[[

A(Q̃ ⊙X ⊤X )C
]

i ,i Q̃i , j

]
.

Proof of Equation (4.4)

Similarly,

E

[(
P⊤N

p
⊙ A

)
Q̃

]
i , j

= 1

p

p∑
r=1

n∑
s=1

E
[
Pr,i Nr,s Ai ,sQ̃s, j

]
(Lemma 2.18)= 1

p

p∑
r=1

n∑
s=1

E

[
Pr,i Ai ,s

∂Q̃s, j

∂Nr,s

]
(Lemma 4.21)= − 1

p2

p∑
r=1

n∑
s=1

E

[
Pr,i Ai ,s

n∑
t=1

(
Q̃s,s Xr,t Cs,t Q̃t , j +Q̃s,t Xr,t Ct ,sQ̃s, j

)]

85



Chapter 4. A Random Matrix Analysis of Data Stream Clustering: Coping With Limited Memory
Resources

=− 1

p2 E
[
(P⊤X ⊙ A(Q̃ ⊙ In)C )Q̃

]
i , j −

1

p2 E
[
(P⊤X (Q̃ ⊙C )⊙ A)Q̃

]
i , j .

4.A.3 Concentration Results

Concentration of Bilinear Forms and Traces of the Resolvent

Here, we show the following important result.

Proposition 4.22. E[Q̃] is a deterministic equivalent (Definition 2.17) of Q̃ , i.e.,

a⊤(
Q̃ −E[Q̃

])
b

a.s.−−−−−−−−→
p,n,L→+∞

0 and
1

n
Tr A

(
Q̃ −E[Q̃

]) a.s.−−−−−−−−→
p,n,L→+∞

0.

for all bounded (sequences of) vectors a,b ∈Rn and matrices A ∈Rn×n .

Proof. Let us start this proof with a “two-in-one” computation. Consider a matrix B which will either
be ba⊤ or 1

n A. We can bound from above the variance of TrBQ̃ using the Poincaré-Nash inequality
(Lemma 2.19), Stein’s lemma (Lemma 2.18) and Lemma 4.21.

Var
(
TrBQ̃

) (Lemma 2.19)É
p∑

i=1

n∑
j=1
E

[∣∣∣∣∂TrBQ

∂Ni , j

∣∣∣∣2]
(Lemma 2.18)=

p∑
i=1

n∑
j=1
E

[∣∣∣∣ n∑
r=1

n∑
s=1

Br,s
∂Q̃s,r

∂Ni , j

∣∣∣∣2]
(Lemma 4.21)= 1

p2

p∑
i=1

n∑
j=1
E

[∣∣∣∣ n∑
r=1

n∑
s=1

Br,s

n∑
t=1

(
Q̃s, j Xi ,t C j ,t Q̃t ,r +Q̃s,t Xi ,t Ct , j Q̃ j ,r

)∣∣∣∣2
]

= 1

p2

p∑
i=1

n∑
j=1
E

[∣∣∣[X (Q̃(B +B⊤)Q̃ ⊙C )
]

i , j

∣∣∣2
]

= 1

p2 E
[∥∥X (Q̃(B +B⊤)Q̃ ⊙C )

∥∥2
F

]
.

Then, we use the inequalities (a +b)2 É 2(a2 +b2) and ∥AB∥F É ∥A∥∥B∥F,

Var
(
TrBQ̃

)É 2

p2 E
[∥∥X (Q̃BQ̃ ⊙C )

∥∥2
F +

∥∥X (Q̃B⊤Q̃ ⊙C )
∥∥2

F

]
É 2

p2 E
[
∥X ∥2∥∥Q̃BQ̃ ⊙C

∥∥2
F +∥X ∥2∥∥Q̃B⊤Q̃ ⊙C

∥∥2
F

]
É 2

p2 E
[
∥X ∥2∥∥Q̃BQ̃

∥∥2
F +∥X ∥2∥∥Q̃B⊤Q̃

∥∥2
F

]
É 4

p2
∥B∥2

FE
[
∥X ∥2∥∥Q̃

∥∥4
]

.

Since ∥A∥ Ép
n∥A∥F and ∥ba⊤∥F = ∥a∥∥b∥, we directly see that

Var

(
1

n
Tr AQ̃

)
É 4

np2
∥A∥2E

[
∥X ∥2∥∥Q̃

∥∥4
]
=Oz (n−2)

and Var
(
a⊤Q̃b

)É 4

p2
∥a∥2∥b∥2E

[
∥X ∥2∥∥Q̃

∥∥4
]
=Oz (n−1).

So we can already state that 1
n Tr A(Q̃ −E[Q̃]) → 0 almost surely as per Lemma 2.20. In order to show

the concentration of bilinear forms, observe that
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E
[∣∣a⊤(

Q̃ −E[Q̃
])

b
∣∣4

]
= Var

((
a⊤(

Q̃ −E[Q̃
])

b
)2

)
+

∣∣∣E[(a⊤(
Q̃ −E[Q̃

])
b
)2

]∣∣∣2

É Var
((

a⊤(
Q̃ −E[Q̃

])
b
)2

)
+Var

(
a⊤Q̃b

)2︸ ︷︷ ︸
=Oz (n−2)

and we can likewise bound from above the variance of (a⊤(Q̃ −E[Q̃])b)2 with the Poincaré-Nash in-
equality (Lemma 2.19),

Var
((

a⊤(
Q̃ −E[Q̃

])
b
)2

)
É

p∑
i=1

n∑
i=1
E

[∣∣∣∣2(
a⊤(

Q̃ −E[Q̃
])

b
)∂a⊤Q̃b

∂Ni , j

∣∣∣∣2]

= 4

p2

p∑
i=1

n∑
i=1
E

[∣∣a⊤(
Q̃ −E[Q̃

])
b
∣∣2

∣∣∣[X (Q̃(ab⊤+ba⊤)Q̃ ⊙C )
]

i , j

∣∣∣2
]

= 4

p2 E
[∣∣a⊤(

Q̃ −E[Q̃
])

b
∣∣2∥∥X (Q̃(ab⊤+ba⊤)Q̃ ⊙C )

∥∥2
F

]
É 16

p2
∥a∥2∥b∥2E

[∣∣a⊤(
Q̃ −E[Q̃

])
b
∣∣2∥X ∥2∥∥Q̃

∥∥4
]
=Oz (n−2).

Hence, E[|a⊤(Q̃ −E[Q̃])b|4] =Oz (n−2) and the almost sure convergence a⊤(Q̃ −E[Q̃])b → 0 is given by
Lemma 2.20.

Remark 4.23. In the proof of Proposition 4.22, we have shown that

Var
(
a⊤Q̃b

)=Oz (n−1) and Var

(
1

n
Tr AQ̃

)
=Oz (n−2).

Variance of a Particular Quantity

We also state here a result on the variance of a specific quantity which will be useful in the upcoming
analysis.

Proposition 4.24. Var
([

1
p C

(
Q̃ ⊙ X ⊤X

p

)
C

]
r,s

)
=Oz (n−2) for all r, s ∈ [n].

Proof. We use the same technique as in the proof of Proposition 4.22 with the Poincaré-Nash inequal-
ity (Lemma 2.19), Stein’s lemma (Lemma 2.18) and Lemma 4.21.

Var

([
1

p
C

(
Q̃ ⊙ X ⊤X

p

)
C

]
r,s

)

É
p∑

i=1

n∑
j=1
E

[∣∣∣∣∣ ∂

∂Ni , j

[
1

p
C

(
Q̃ ⊙ X ⊤X

p

)
C

]
r,s

∣∣∣∣∣
2]

= 1

p4

p∑
i=1

n∑
j=1
E

[∣∣∣∣ ∂

∂Ni , j

n∑
t=1

n∑
u=1

p∑
v=1

Cr,t Q̃t ,u Xv,t Xv,uCu,s

∣∣∣∣2]

= 1

p4

p∑
i=1

n∑
j=1
E

[∣∣∣∣ n∑
t=1

n∑
u=1

p∑
v=1

Cr,t
∂Q̃t ,u

∂Ni , j
Xv,t Xv,uCu,s +

n∑
u=1

Cr, j Q̃ j ,u Xi ,uCu,s +
n∑

t=1
Cr,t Q̃t , j Xi ,t C j ,s

∣∣∣∣2]
.
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Let us deal with each term inside E[|·|2] separately.

n∑
t=1

n∑
u=1

p∑
v=1

Cr,t
∂Q̃t ,u

∂Ni , j
Xv,t Xv,uCu,s

=− 1

p

n∑
t=1

n∑
u=1

p∑
v=1

Cr,t

n∑
w=1

(
Q̃t , j Xi ,wC j ,wQ̃w,u +Q̃t ,w Xi ,wCw, j Q̃ j ,u

)
Xv,t Xv,uCu,s

=− 1

p

[
X

(
Q̃

(
X ⊤X ⊙C·,sCr,·+X ⊤X ⊙C·,r Cs,·

)
Q̃ ⊙C

)]
i , j

and
n∑

u=1
Cr, j Q̃ j ,u Xi ,uCu,s +

n∑
t=1

Cr,t Q̃t , j Xi ,t C j ,s =
[

X (Q̃ ⊙C·,sCr,·)+X (Q̃ ⊙C·,r Cs,·)
]

i , j .

Hence,

Var

([
1

p
C

(
Q̃ ⊙ X ⊤X

p

)
C

]
r,s

)

É 1

p4 E

[∥∥∥∥−X
(
Q̃

(
X ⊤X

p
⊙C·,sCr,·+

X ⊤X

p
⊙C·,r Cs,·

)
Q̃ ⊙C

)
+X (Q̃ ⊙C·,sCr,·)+X (Q̃ ⊙C·,r Cs,·)

∥∥∥∥2

F

]

É 2

p4 E

[
∥X ∥2

(∥∥∥∥Q̃
(

X ⊤X

p
⊙C·,sCr,·+

X ⊤X

p
⊙C·,r Cs,·

)
Q̃ ⊙C

∥∥∥∥2

F
+

∥∥Q̃ ⊙C·,sCr,·+Q̃ ⊙C·,r Cs,·
∥∥2

F

)]

É 2

p4 E

[
∥X ∥2

(∥∥∥∥Q̃
(

X ⊤X

p
⊙C·,sCr,·+

X ⊤X

p
⊙C·,r Cs,·

)
Q̃

∥∥∥∥2

F
+2

(∥∥Q̃
∥∥2

F +
∥∥Q̃

∥∥2
F

))]

É 2

p4 E

[
∥X ∥2

(
2
∥∥Q̃

∥∥4

(∥∥∥∥ X ⊤X

p

∥∥∥∥2

F
+

∥∥∥∥ X ⊤X

p

∥∥∥∥2

F

)
+4n

∥∥Q̃
∥∥2

)]

É 8n

p4 E

[
∥X ∥2

(∥∥Q̃
∥∥4

∥∥∥∥ X ⊤X

p

∥∥∥∥2

+
∥∥Q̃

∥∥2

)]
=Oz (n−2).

4.A.4 Limiting Spectral Distribution

In this section, we study the limiting behavior of the empirical spectral distribution of X ⊤X
p ⊙C via its

Stieltjes transform, which is the normalized trace of its resolvent (Proposition 2.6).

Let us define the resolvent of the “noise part”, Q̃0(z)
def= ( N⊤N

p ⊙C −zIn)−1 for all z ∈C\Sp( N⊤N
p ⊙C ).

The following proposition shows that, in order to derive the limiting spectral distribution, we can
study the simpler resolvent Q̃0. In other words, the addition of a signal P does not change the limiting
spectral distribution and so we can neglect it.

Proposition 4.25. 1
n TrQ̃0 − 1

n TrQ̃ → 0 almost surely as p,n,L →+∞.

Proof. Let S = P⊤P
p + P⊤N

p + N⊤P
p . Note that the rank of S is at most 3K =O (1).∣∣∣∣ 1

n
TrQ̃0 −

1

n
TrQ̃

∣∣∣∣= 1

n

∣∣TrQ̃0(S ⊙C )Q̃
∣∣ from the resolvent identity (Proposition 2.21)

É 1

n

n∑
i=1

si (Q̃Q̃0)si (S ⊙C ) from Propositions 4.13 and 4.14
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É 1

n

∥∥Q̃
∥∥∥∥Q̃0

∥∥ n∑
i=1

si (S ⊙C )

É 1

n

∥∥Q̃
∥∥∥∥Q̃0

∥∥pn

√
n∑

i=1
s2

i (S ⊙C ) from the Cauchy-Schwarz inequality

É 1p
n

∥∥Q̃
∥∥∥∥Q̃0

∥∥√
n∑

i=1
s2

i (S) since ∥S ⊙C∥F É ∥S∥F

É
√

3K

n

∥∥Q̃
∥∥∥∥Q̃0

∥∥∥S∥ since RankS É 3K .

Hence, | 1
n TrQ̃0 − 1

n TrQ̃| =Oz (n−1/2).

Since Q̃−1
0 Q̃0 = In , we have

E

[(
N⊤N

p
⊙C

)
Q̃0

]
= zE

[
Q̃0

]+ In

and, by Equation (4.3) when A =C and P = 0p×n , this becomes

E
[
(C ⊙ In)Q̃0

]−E[(H0 ⊙ In)Q̃0
]−E[ 1

p

(
(Q̃0 ⊙C )

N⊤N

p
⊙C

)
Q̃0

]
= zE

[
Q̃0

]+ In

where H0
def= 1

p C (Q̃0 ⊙ N⊤N
p )C . In the left-hand side, C ⊙ In = In and ∥E[ 1

p ((Q̃0 ⊙C ) N⊤N
p ⊙C )Q̃0]∥ =

Oz (n−1(logn)2) by Proposition 4.17. Moreover, E[(H0 ⊙ In)Q̃0]i , j = E[[H0]i ,i [Q̃0]i , j ] = E[H0]i ,iE[Q̃0]i , j +
Cov([H0]i ,i , [Q̃0]i , j ) and |Cov([H0]i ,i , [Q̃0]i , j )| É

√
Var([H0]i ,i )Var([Q̃0]i , j ) = Oz (n−3/2) by the Cauchy-

Schwarz inequality and Proposition 4.24 (see also Remark 4.23 for the variance of [Q̃0]i , j ). Hence

E[(H0 ⊙ In)Q̃0]i , j = E[H0 ⊙ In]E[Q̃0]+O
∥·∥max
z (n−3/2) where O

∥·∥max
z (n−3/2) is a matrix whose entries are

Oz (n−3/2). Consequently,

E[(H0 ⊙ In)]E
[
Q̃0

]+ (z −1)E
[
Q̃0

]+ In =O
∥·∥max
z (n−3/2)+O

∥·∥
z (n−1(logn)2)

where O
∥·∥
z (n−1(logn)2) is a matrix whose spectral norm ∥·∥ is Oz (n−1(logn)2). In particular,(

E[H0]i ,i + z −1
)
E
[
Q̃0

]
i ,i +1 =Oz (n−1(logn)2) for all i ∈ [n]. (4.5)

Proposition 4.26. The diagonal entries of Q̃0 are identically distributed.

Proof. Consider the permutation matrix

R =



0 1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . . 1 0

0 . . . . . . 0 1
1 0 . . . . . . 0

.

Notice that R( N⊤N
p ⊙C )R⊤ = R N⊤N

p R⊤⊙C since the action of R[·]R⊤ is to shift circularly all the entries

of the matrix towards the upper left therefore it preserves the diagonal structure of N⊤N
p ⊙C . More-

over,
[

N⊤N
p

]
i , j

= 1
p

∑p
k=1 Nk,i Nk, j is identically distributed to

[
N⊤N

p

]
[(i−d−1)modn]+1,[( j−d−1)modn]+1

=
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[
Rd N⊤N

p R⊤d
]

i , j
. Thus, Q̃0 is identically distributed to Rd Q̃0R⊤d and, in particular, [Q̃0]1,1 is identi-

cally distributed to [Q̃0]d ,d for all d ∈ [n].

According to Proposition 4.26, E[Q̃i ,i ] = 1
n TrE[Q̃0] = E[m̃n(z)] for all i ∈ [n], where m̃n(z)

def= 1
n TrQ̃0

is the Stieltjes transform of the empirical spectral distribution of N⊤N
p ⊙C . Recall that E[m̃n(z)] is also

a Stieltjes transform according to Corollary 2.9. Hence, Equation (4.5) becomes(
η0(z)+ z −1

)
E[m̃n(z)]+1 = 0 (4.6)

where η0(z) is such that E[H0]i ,i = η0(z)+Oz (n−1(logn)2) for all i ∈ [n].
We will now study the entries of H to identify the quantity η0(z). Thanks to the relation [ 1

p A(Q̃ ⊙
N⊤N

p )C ]i , j = 1
p Tr(Q̃( N⊤N

p ⊙ [A⊤
i ,·C j ,·])), we can use Equation (4.3) in the expression of E[H0]i , j .

E[H0]i , j =
1

p
TrE

[(
N⊤N

p
⊙ [C·,i C j ,·]

)
Q̃0

]
= 1

p

n∑
k=1

E

[(
N⊤N

p
⊙ [C·,i C j ,·]

)
Q̃0

]
k,k

= 1

p

n∑
k=1

E

[(
[C·,i C j ,·]⊙ In − 1

p
[C·,i C j ,·]

(
Q̃0 ⊙

N⊤N

p

)
C ⊙ In − 1

p
(Q̃0 ⊙ [C·,i C j ,·])

N⊤N

p
⊙C

)
Q̃0

]
k,k

= 1

p

n∑
k=1

E

[
Ck,i C j ,k [Q̃0]k,k −

1

p
Tr

(
Q̃0

(
N⊤N

p
⊙ [[C·,i C j ,·]⊤k,·Ck,·]

))
[Q̃0]k,k

]
+Oz (n−1 logn)

= 1

p

n∑
k=1

(Ck,i − [H0]i ,k )E
[
C j ,k [Q̃0]k,k

]+Oz (n−1 logn)

= 1

p

n∑
k=1

(Ck,i −E[H0]i ,k )C j ,kE
[
Q̃0

]
k,k +Oz (n−1 logn)

where the Oz (n−1 logn) stems from the inequalities given in Propositions 4.17 and 4.19 and, in the
last equality, we have used the fact that E[[H0]i ,k [Q̃0]k,k ] = E[H0]i ,kE[Q̃0]k,k +Oz (n−3/2) as proven
above. Since E[Q̃0]k,k = E[m̃n(z)] for all k ∈ [n], we have E[H0] = E[m̃n(z)](C − E[H0]) C

p + E where

E =O
∥·∥max
z (n−1 logn). Let H̄ be the matrix such that

H̄ = E[m̃n(z)](C − H̄)
C

p
⇐⇒ H̄

(
In +E[m̃n(z)]

C

p

)
= E[m̃n(z)]

C 2

p
.

The existence and uniqueness of such a H̄ is guaranteed if In+E[m̃n(z)] C
p is invertible, which is always

the case if z ∈C\R since ℑz ̸= 0 =⇒ 1+E[m̃n(z)]ψk
p ̸= 0. Then,

H̄ = E[m̃n(z)]
C 2

p

(
In +E[m̃n(z)]

C

p

)−1

=C
(

In +E[m̃n(z)]
C

p
− In

)(
In +E[m̃n(z)]

C

p

)−1

=C −C
(

In +E[m̃n(z)]
C

p

)−1

.

As E[H0]− H̄ =−E[m̃n(z)](E[H0]− H̄) C
p +E , we have
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∣∣∣[E[H0]− H̄
]

i , j

∣∣∣= ∣∣∣∣∣
[

E
(

In +E[m̃n(z)]
C

p

)−1]
i , j

∣∣∣∣∣=
∣∣∣∣∣ n∑
k=1

Ei ,k

[
In +E[m̃n(z)]

C

p

]−1

k, j

∣∣∣∣∣
É κ logn

n

∥∥∥∥(
In +E[m̃n(z)]

C

p

)−1∥∥∥∥
1
= κ logn

n

∥∥∥∥(
In +E[m̃n(z)]

C

p

)−1∥∥∥∥
∞

where κ> 0 is a constant and ∥·∥1,∥·∥∞ are the induced matrix 1-norm and ∞-norm. The last equality
stems from the fact that In + E[m̃n(z)] C

p is symmetric. Moreover, from the inequality ∥·∥∞ É p
n∥·∥

between ∞-norm and spectral norm,∥∥∥∥(
In +E[m̃n(z)]

C

p

)−1∥∥∥∥
∞

Ép
n

∥∥∥∥(
In +E[m̃n(z)]

C

p

)−1∥∥∥∥=p
n max

0ÉkÉn−1

∣∣∣∣1+E[m̃n(z)]
ψk

p

∣∣∣∣−1

=Oz (
p

n)

thus E[H0]i , j = H̄i , j +Oz (n−1/2 logn). Hence,

η0(z) = H̄i ,i +Oz (n−1/2 logn) with H̄i ,i =
1

n
Tr H̄ = 1−

n−1∑
k=0

ψk

1+E[m̃n(z)]ψk
p

and Equation (4.6) becomes

1+ zE[m̃n(z)]− p

n

n−1∑
k=0

E[m̃n(z)]ψk
p

1+E[m̃n(z)]ψk
p

=Oz (n−1/2 logn). (4.7)

We will now show that there is a deterministic Stieltjes transform m̄n such that |m̃n(z)−m̄n(z)|→ 0
almost surely as p,n,L → +∞. Let Tn be the operator acting on the set of functions of a complex
variable such that

Tn[m](z) = 1
1
n

∑n−1
k=0

ψk

1+m(z)
ψk
p

− z
.

Proposition 4.27. If m is the Stieltjes transform of a finite real measure, then Tn[m] is the Stieltjes
transform of a real probability measure.

Proof. We prove this result with Theorem 2.8. As the composition of analytic functions, Tn[m] is ana-
lytic on C+. Since m(z̄) = m(z), we also have Tn[m](z̄) = Tn[m](z). Moreover, if ℑz > 0, then

ℑTn[m] =ℑ


1
n

∑n−1
k=0

ψk

(
1+m(z)

ψk
p

)
∣∣∣1+m(z)

ψk
p

∣∣∣2 − z̄

∣∣∣∣ 1
n

∑n−1
k=0

ψk

1+m(z)
ψk
p

− z

∣∣∣∣2

=

1
n

∑n−1
k=0

ℑ[m(z)]
ψ2

k
p∣∣∣1+m(z)

ψk
p

∣∣∣2 +ℑ[z]

∣∣∣∣ 1
n

∑n−1
k=0

ψk

1+m(z)
ψk
p

− z

∣∣∣∣2 > 0

and

|Tn[m](z)| = 1∣∣∣∣ 1
n

∑n−1
k=0

ψk

1+m(z)
ψk
p

− z

∣∣∣∣ É
1∣∣∣∣ℑ[

1
n

∑n−1
k=0

ψk

1+m(z)
ψk
p

− z

]∣∣∣∣ É
1

|ℑz|

since ℑ
[

1
n

∑n−1
k=0

ψk

1+m(z)
ψk
p

]
= 1

n

∑n−1
k=0

ℑ[m(z)]
ψ2

k
p∣∣∣1+m(z)

ψk
p

∣∣∣2 < 0. Finally,

−iyTn[m](iy) = −iy
1
n

∑n−1
k=0

ψk

1+m(iy)
ψk
p

− iy
−−−−−→
y→+∞ 1.

because m(iy) → 0 as y →+∞ and 1
n

∑n
k=0ψk = 1. The assumptions of Theorem 2.8 are thus verified

and Tn[m] is the Stieltjes transform of unique probability measure on R.
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As a consequence to Proposition 4.27, Equation (4.7) is equivalent to E[m̃n](z) = Tn[E[m̃n]](z)+
Oz (n−1/2 logn). Moreover, we have the following result.

Proposition 4.28. There exists a unique real probability measure µ̄n whose Stieltjes transform m̄n sat-
isfies Tn[m̄n] = m̄n .

Proof. This demonstration is in three steps: (i) we show the existence of a function m̄n such that
m̄n = Tn[m̄n], (ii) we establish that m̄n is a Stieltjes transform of a real probability measure, (iii) we
prove its uniqueness.

(i) Existence. For any given positive integer q Ê 1, define the alternative mask Cq
def= 1q×q ⊠C where ⊠

denotes the Kronecker product, i.e., Cq =
[

C ... C
...

. . .
...

C ... C

]
∈ Rqn×qn . It is also a circulant matrix. Notice that

the line of reasoning followed so far is unchanged if we consider instead a qp ×qn random matrix N
and replace C by Cq . In particular, we can verify the following points.

• The eigenvalues of Cq are qψ0, . . . , qψn−1 and (q −1)n zeros.

• We must only be careful that Proposition 4.17 becomes ∥A⊙Cq∥ Éα logn∥A∥ (and not log(qn) !).
This result comes with the same proof and the eigendecomposition ( 1p

q 1q ⊠F̃ )(qΨ)( 1p
q 1q ⊠F̃ )⊤.

• The result of Proposition 4.19 remains true if we replace C by Cq .

• The equations derived in Section 4.A.2 remain true because we only use the fact that the mask
in symmetric.

• The concentration results in Section 4.A.3 remain true as well because the upper bound ∥A ⊙
Cq∥F É ∥A∥F is still true.

• In the proof of Proposition 4.26, R can be replaced by its qn ×qn version (or 1q×q ⊠R as well).

Therefore, we can simply replace p,n,C by qp, qn,Cq everywhere with the only exception that logn
does not become log(qn) but remains logn. Notably, denoting m̃n,q the Stieltjes transform of the em-

pirical spectral distribution of N⊤N
qp ⊙Cq (recall that N is now of size qp×qn), Equation (4.7) becomes

1+ zE
[
m̃n,q (z)

]− qp

qn

n−1∑
k=0

E
[
m̃n,q (z)

] qψk
qp

1+E[m̃n,q (z)
] qψk

qp

=Oz ((qn)−1/2 logn).

After simplification, we see that E[m̃n,q (z)] satisfies the same equation as E[m̃n(z)] with an error term
Oz ((qn)−1/2 logn) instead of Oz (n−1/2 logn), i.e, E[m̃n,q ](z) = Tn[E[m̃n,q ]](z)+Oz ((qn)−1/2 logn). Fix
z ∈C \R. Since E[m̃n,q ] is a Stieltjes transform (Corollary 2.9), |E[m̃n,q (z)]| É 1

|ℑz| thus the sequence of
complex numbers (E[m̃n,q (z)])qÊ1 is bounded. Consider a converging subsequence (as q →+∞ but n
is fixed) and denote its limit m̄n(z). Thus, m̄n is defined on C\R and satisfies m̄n = Tn[m̄n].
(ii) Stieltjes transform. As per Proposition 2.10, m̄n is the Stieltjes transform of a finite real measure
and, by Proposition 4.27, since m̄n = Tn[m̄n], it is the Stieltjes transform of a real probability measure.
(iii) Uniqueness. Assume there exists another Stieltjes transform (of a real probability measure) m̌n

such that m̌n = Tn[m̌n]. Then,

m̄n(z)−m̌n(z) = 1
1
n

∑n−1
k=0

ψk

1+m̄n (z)
ψk
p

− z
− 1

1
n

∑n−1
k=0

ψk

1+m̌n (z)
ψk
p

− z
= γ(z)(m̄n(z)−m̌n(z))
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where γ(z) =
1
n

∑n−1
k=0

ψ2
k /p(

1+m̄n (z)
ψk
p

)(
1+m̌n (z)

ψk
p

)(
1
n

∑n−1
k=0

ψk

1+m̄n (z)
ψk
p

− z

)(
1
n

∑n−1
k=0

ψk

1+m̌n (z)
ψk
p

− z

) = p

n

n−1∑
k=0

m̄n(z)ψk
p

1+m̄n(z)ψk
p

m̌n(z)ψk
p

1+m̌n(z)ψk
p

.

Since m̄n(z),m̌n z → 0 as |z|→+∞, γ ̸= 1 and we conclude that m̄n = m̌n .

Following Proposition 4.28, m̄n(z) satisfies

1+ zm̄n(z)− p

n

n−1∑
k=0

m̄n(z)ψk
p

1+m̄n(z)ψk
p

= 0

and we can subtract this relation to Equation (4.7),

(E[m̃n(z)]−m̄n(z))

z − 1

n

n−1∑
k=0

ψk(
1+E[m̃n(z)]ψk

p

)(
1+m̄n(z)ψk

p

)
=Oz (n−1/2 logn) (4.8)

Let us state here the following lemma.

Lemma 4.29. Let z1, z2 ∈C such that |z1|, |z2| < 1. If the signs of ℑz1 and ℑz2 are equal then the sign of

ℑ
[

−1
(1+z1)(1+z2)

]
is the same.

Proof. Let a1, a2,b1,b2 ∈R such that z1 = a1 + ib1 and z2 = a2 + ib2.

ℑ
[ −1

(1+ z1)(1+ z2)

]
=−ℑ

[
(1+a1 − ib1)(1+a2 − ib2)

|1+ z1|2|1+ z2|2
]
= (1+a1)b2 + (1+a2)b1

|1+ z1|2|1+ z2|2
.

Since |z1|, |z2| < 1, the real numbers 1+a1 and 1+a2 are strictly positive. Hence, as the signs of b1 and
b2 are the same, it is also the sign of (1+a1)b2 + (1+a2)b1.

Assume, for the moment, that |E[m̃n(z)]| 2L−1
p < 1 and |m̄n(z)| 2L−1

p < 1. Since E[m̃n] and m̄n are

Stieltjes transforms of real probability measures, this is true at least if |ℑz| > 2L−1
p = ε

c . Moreover,

if ℑz > 0, then E[m̃n(z)](z),m̄n(z) > 0 and the signs of ℑ[E[m̃n(z)]ψk
p ] and ℑ[m̄n(z)ψk

p ] are that of

ψk . Then, according to Lemma 4.29, the sign of ℑ
[

−1(
1+E[m̃n (z)]

ψk
p

)(
1+m̄n (z)

ψk
p

)
]

is also that of ψk and

ℑ
[

−ψk(
1+E[m̃n (z)]

ψk
p

)(
1+m̄n (z)

ψk
p

)
]

is positive. Similarly, if ℑz < 0 then ℑ
[

−ψk(
1+E[m̃n (z)]

ψk
p

)(
1+m̄n (z)

ψk
p

)
]

is nega-

tive. Therefore,

1∣∣∣∣∣z − 1
n

∑n−1
k=0

ψk(
1+E[m̃n (z)]

ψk
p

)(
1+m̄n (z)

ψk
p

)
∣∣∣∣∣
É 1∣∣∣∣∣ℑz + 1

n

∑n−1
k=0 ℑ

−ψk(
1+E[m̃n (z)]

ψk
p

)(
1+m̄n (z)

ψk
p

)
∣∣∣∣∣
É 1

|ℑz|

and Equation (4.8) simplifies into

E[m̃n(z)]−m̄n(z) =Oz (n−1/2 logn).

In summary, then sequence of analytic functions z 7→ E[m̃n(z)]− m̄n(z) converges pointwise to 0 (at
least) on {z ∈ C | |ℑz| > ε

c }. But since they are analytic on C \R, the pointwise convergence to 0 holds
on C\R as well, as per Vitali’s convergence theorem (Theorem 2.24).

Finally, |m̃n(z)− m̄n(z)| → 0 almost surely as p,n,L →+∞ by the concentration of m̃n(z) around
its expectation proven in Proposition 4.22.
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4.A.5 Deterministic Equivalent of the Resolvent

In this section, we consider the “full” signal-plus-noise model X = P + N and derive a deterministic

equivalent of the resolvent Q̃(z) = ( X ⊤X
p ⊙C − zIn)−1. As shown with Proposition 4.25, the asymptotic

behavior of the limiting spectral distribution of X ⊤X
p ⊙C is characterized by the deterministic Stieltjes

transform m̄n .
Since Q̃−1Q̃ = In , we have

E

[(
P⊤X

p
⊙C

)
Q̃

]
+E

[(
N⊤X

p
⊙C

)
Q̃

]
= zE

[
Q̃

]+ In

and, by Equation (4.3), this becomes

E

[(
P⊤X

p
⊙C

)
Q̃

]
+E[Q̃

]−E[(H ⊙ In)]E
[
Q̃

]+O
∥·∥max
z (n−3/2)+Oz,∥·∥(n−1(log n)2) = zE

[
Q̃

]+ In (4.9)

where H = 1
p C (Q̃ ⊙ X ⊤X

p )C and E[(H ⊙ In)Q̃] = E[H ⊙ In]E[Q̃]+O
∥·∥max
z (n−3/2) as for the model without

signal.

Proposition 4.30. H = H0 +O
∥·∥max
z (n−1).

Proof. Recall the relation [ 1
p A(Q̃ ⊙ X ⊤X

p )C ]i , j = 1
p Tr(Q̃( X ⊤X

p ⊙ [A⊤
i ,·C j ,·])). Then,

Hi , j =
1

p
Tr

(
Q̃

(
X ⊤X

p
⊙ [C·,i C j ,·]

))
= 1

p
Tr

(
Q̃

([
P⊤P

p
+ P⊤N

p
+ N⊤P

p

]
⊙ [C·,i C j ,·]

))
+ 1

p
Tr

(
Q̃

(
N⊤N

p
⊙ [C·,i C j ,·]

))
= 1

p
Tr

(
Q̃

(
S ⊙ [C·,i C j ,·]

))+ [H0]i , j

where we have introduced S
def= P⊤P

p + P⊤N
p + N⊤P

p , whose rank is at most 3K =O (1).

∣∣∣∣ 1

p
Tr

(
Q̃

(
S ⊙ [C·,i C j ,·]

))∣∣∣∣= 1

p

∣∣Tr
(
Q̃ Diag(C·,i )S Diag(C j ,·)

)∣∣
É 1

p

n∑
k=1

sk (Q̃ Diag(C·,i )S Diag(C j ,·)) from Proposition 4.13

É 1

p

n∑
k=1

sk (Q̃)sk (Diag(C·,i )S Diag(C j ,·)) from Proposition 4.14

É 1

p

∥∥Q̃
∥∥ n∑

k=1
sk (Diag(C·,i )S Diag(C j ,·))

É 3K

p

∥∥Q̃
∥∥∥∥Diag(C·,i )S Diag(C j ,·)

∥∥ since RankS É 3K

É 3K

p

∥∥Q̃
∥∥∥S∥ =Oz (n−1) since

∥∥Diag(C·,i )
∥∥=

∥∥Diag(C j ,·)
∥∥= 1.
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Combining Proposition 4.30 and the fact (proven above) that E[H0]i , j = H̄i , j +Oz (n−1/2 logn), we
have E[Hi ,i ] = η0(z)+Oz (n−1/2 logn) for all i ∈ [n]. Thus, using Equation (4.6) in Equation (4.9) yields

E

[(
P⊤X

p
⊙C

)
Q̃

]
+ 1

E[m̃n(z)]
E
[
Q̃

]= In +O
∥·∥
z (n−1/2 logn) (4.10)

where the O
∥·∥max
z (n−3/2) in Equation (4.9) is absorbed in the O

∥·∥
z (n−1/2 logn) since O

∥·∥max
z (n−3/2) =

O
∥·∥
z (n−1/2) (in accordance with the inequalities ∥·∥ É ∥·∥F É n ×∥·∥max). Moreover, with the decompo-

sition P = M J⊤ (Assumption 4.3), we have[(
P⊤X

p
⊙C

)
Q̃

]
i ,i

=
n∑

k=1

[
P⊤X

p

]
i ,k

Ci ,kQ̃k,i

= 1p
p

n∑
k=1

K∑
l=1

Ji ,l

[
M⊤ Xp

p

]
l ,k

Ci ,kQ̃k,i

= 1p
p

K∑
l=1

Ji ,l

[
M⊤ Xp

p
(Q̃ ⊙C )

]
l ,i

where Ji ,l ∈ {0,1} and
∣∣∣[M⊤ Xp

p (Q̃ ⊙C )
]

l ,i

∣∣∣ É ∥∥∥M⊤ Xp
p (Q̃ ⊙C )

∥∥∥ = Oz (logn) almost surely. Therefore,

E
[(

P⊤X
p ⊙C

)
Q̃

]
i ,i

=Oz (n−1/2 logn) and, by Equation (4.10),

1

E[m̃n(z)]
E
[
Q̃i ,i

]= 1+Oz (n−1/2 logn) ⇐⇒ E
[
Q̃i ,i

]= E[m̃n(z)]+Oz (n−1/2 logn)

= m̄n(z)+Oz (n−1/2 logn).

In the proof of Proposition 4.22, we have shown that E[|Q̃i ,i −E[Q̃i ,i ]|4] = Oz (n−2). Thus, by Markov’s
inequality (Billingsley, 2012, Equation 5.31),

P
(∣∣Q̃i ,i −E

[
Q̃i ,i

]∣∣Ê n−δ
)
É n4δ×Oz (n−2) =Oz (n4δ−2).

Then, according to the first Borel-Cantelli lemma (Billingsley, 2012, Theorem 4.3), Q̃i ,i = E[Q̃i ,i ] +
Oz (n−δ) almost surely for all δ < 1

4 . Consequently, Q̃i ,i = m̄n(z)+Oz (n−δ) almost surely as well. This

observation is useful to handle the term E[( P⊤X
p ⊙C )Q̃] in Equation (4.10). Indeed, E[( P⊤X

p ⊙C )Q̃] =
E[( P⊤P

p ⊙C )Q̃]+E[( P⊤N
p ⊙C )Q̃] and we have the following result.

Proposition 4.31. For all integer q Ê 0,

E

[(
P⊤N

p
⊙C

(
−m̄n(z)

p
C

)q)
Q̃

]
= E

[(
P⊤X

p
⊙C

(
−m̄n(z)

C

p

)q+1)
Q̃

]
+O

∥·∥
z (n−δ).

Proof. We use Equation (4.4) with A =C (−m̄n(z) C
p )q ,

E

[(
P⊤N

p
⊙C

(
−m̄n(z)

C

p

)q)
Q̃

]
=− 1

p
E

[(
P⊤X

p
⊙C

(
−m̄n(z)

C

p

)q

(Q̃ ⊙ In)C
)
Q̃

]
− 1

p
E

[(
P⊤X

p
(Q̃ ⊙C )⊙C

(
−m̄n(z)

C

p

)q)
Q̃

]
= E

[(
P⊤X

p
⊙C

(
−m̄n(z)

C

p

)q+1)
Q̃

]
− (−m̄n(z))qE

[(
P⊤X

p
⊙ C q+1

pq [O∥·∥
z (n−δ)]

C

p

)
Q̃

]
− (−m̄n(z))q

p
E

[(
P⊤X

p
(Q̃ ⊙C )⊙ C q+1

pq

)
Q̃

]
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= E
[(

P⊤X

p
⊙C

(
−m̄n(z)

C

p

)q+1)
Q̃

]
+O

∥·∥
z (n−δ(logn)q+2)+O

∥·∥
z (n−1(logn)q+2)

according to Proposition 4.18. Since this is true for all δ< 1
4 and O

∥·∥
z (n−δ(logn)q+2) =O

∥·∥
z (n−δ′ ) for all

δ′ < δ, the rest is O
∥·∥
z (n−δ) for all δ< 1

4 .

Following Proposition 4.31,

E

[(
P⊤X

p
⊙C

)
Q̃

]
= E

[(
P⊤P

p
⊙C

)
Q̃

]
+E

[(
P⊤N

p
⊙C

)
Q̃

]
= E

[(
P⊤P

p
⊙C

)
Q̃

]
+E

[(
P⊤P

p
⊙C

(
−m̄n(z)

C

p

))
Q̃

]
+E

[(
P⊤N

p
⊙C

(
−m̄n(z)

C

p

))
Q̃

]
+O

∥·∥
z (n−δ)

= . . .

=
q∑

q=0
E

[(
P⊤P

p
⊙C

(
−m̄n(z)

C

p

)q)
Q̃

]
+E

[(
P⊤N

p
⊙C

(
−m̄n(z)

C

p

)q)
Q̃

]
+O

∥·∥
z (n−δ)

=
(

P⊤P

p
⊙C

q∑
q=0

(
−m̄n(z)

C

p

)q
)
E
[
Q̃

]+E[(
P⊤N

p
⊙C

(
−m̄n(z)

C

p

)q)
Q̃

]
+O

∥·∥
z (n−δ)

for all integer qÊ 0. If ∥m̄n(z) C
p ∥ = |m̄n(z)| 2L−1

p < 1 then we can make q grow to +∞, which yields

E

[(
P⊤X

p
⊙C

)
Q̃

]
=

(
P⊤P

p
⊙C

(
In +m̄n(z)

C

p

)−1)
E
[
Q̃

]+O
∥·∥
z (n−δ).

Finally, Equation (4.10) becomes[
P⊤P

p
⊙C

(
In +m̄n(z)

C

p

)−1

+ 1

m̄n(z)
In

]
E
[
Q̃

]= In +O
∥·∥
z (n−δ)

so we have the following deterministic equivalent (Definition 2.17) of Q̃ ,

Q̄(z)
def=

[
1

m̄n(z)
In + P⊤P

p
⊙C

(
In +m̄n(z)

C

p

)−1]−1

.

Notice that, although it is derived under the assumption |m̄n(z)| 2L−1
p < 1, the matrix Q̄ is still well-

defined if this condition is not satisfied (as long as z ∈C\R). Furthermore, for all bounded (sequences
of) vectors a,b ∈ Rn and A ∈ Rn×n , the functions z 7→ a⊤(Q̃(z)− Q̄(z))b and z 7→ 1

n Tr A(Q̃ − Q̄) are
analytic and converge pointwise to 0 almost surely as p,n,L → +∞ on {z ∈ C | |ℑz| > ε

c } (which is a

subset of {z ∈C | |m̄n(z)| 2L−1
p < 1} for all p,n,L). Therefore, by Vitali’s convergence theorem (Theorem

2.24), the almost sure pointwise convergence to 0 holds on C\R and Q̄(z) is a deterministic equivalent
of Q̃(z) for all z ∈C\R.

4.B Proof of Theorem 4.8

4.B.1 Conjecture on the Global Behavior of the Spectrum

Before delving into mathematical considerations, we must state that the study of isolated eigenvalues

and eigenvectors of X ⊤X
p ⊙C raises a few technical issues. The model considered differs notably from

96



4.B. Proof of Theorem 4.8

standard spiked random matrix models in the fact that the rank of the perturbation P⊤P
p ⊙C scales

with n. Yet, it can still be seen as if it had a low rank because the majority of eigenvalues of P⊤P
p ⊙C are

negligible and only a small number (not scaling with n) of them are large enough to actually exceed the
expected threshold value of signal-to-noise ratio causing the presence of isolated eigenvalues outside

the spectrum of N⊤N
p ⊙C , just as in standard spiked random matrix models (such as the one studied

in Section 2.3).
Nevertheless this “exoticism” comes with a cost: the tools presented in Chapter 2 (and, in partic-

ular, Section 2.3.3) are no longer quite suited to the study of the present model. Notably, the “trick”
consisting in computing the position of isolated eigenvalues outside the bulk by means of a small de-
terminant given by Sylvester’s identity (Proposition 2.22) cannot help us here. Therefore, we must go
through a simplifying assumption to work this out.

Precisely, we know that the resolvent Q̃(z) is defined for all z which is not an eigenvalue of X ⊤X
p ⊙C .

Therefore, we make the following conjecture where, by isolated eigenvalue, we mean an eigenvalue
lying outside the distribution characterized by m̄n .

Conjecture 4.32. With probability 1, as p,n,L →+∞, the only isolated eigenvalues in the spectrum of
X ⊤X

p ⊙C are the ones converging to the singular points of the deterministic equivalent Q̄ , that is, ξ ∈ R
such that 1

m̄n (ξ) In + P⊤P
p ⊙C

(
In +m̄n(ξ) C

p

)−1
is not invertible (with m̄n(ξ)

def= limy↓0 m̄n(ξ+ iy)).

This property is verified for the random matrix model X ⊤X
p as shown in Section 2.3 and we argue

that adding a mask C — i.e., simply zeroing the entries which are far from the diagonal — is a soft
enough transformation and so it keeps these “nice properties” of the global behavior of the spectrum.
Furthermore, a large number of numerical simulations make us confident with this statement. The
reader is kindly invited to reproduce these simulations with the Python notebooks given in the GitHub
repository https://github.com/HugoLebeau/online_learning/.

Consequently, in the following sections, we exhibit the singular points of the deterministic equiv-
alent Q̄ in the two-class setting (P =µ j⊤). This guarantees that one or more (depending on the mul-
tiplicity) eigenvalues converge to this location if it is outside the support of the distribution charac-
terized by m̄n and we conjecture that these are the only isolated eigenvalues. Then, we study the align-
ments of the corresponding eigenvectors with the signal j through the standard approach relying on
contour integrals presented in Section 2.3.3.

4.B.2 Deterministic Equivalent

Here P = µ j⊤ therefore we can simplify the expression of the deterministic equivalent Q̄ given in
Theorem 4.6. We use the relation M ⊙ ab⊤ = [Diag a]M[Diagb] and the eigendecomposition C =
FΨF⊤ where F =ℜF̃ +ℑF̃ (see Section 4.1.2).

Q̄(z) =
[

1

m̄n(z)
In + P⊤P

p
⊙C

(
In +m̄n(z)

C

p

)−1]−1

=
[

1

m̄n(z)
In +

∥∥µ∥∥2 j j⊤

p
⊙C

(
In +m̄n(z)

C

p

)−1]−1

=
[

1

m̄n(z)
In +

∥∥µ∥∥2D j
C

p

(
In +m̄n(z)

C

p

)−1

D j

]−1

=
[

1

m̄n(z)
In +

∥∥µ∥∥2D j F
Ψ

p

(
In +m̄n(z)

Ψ

p

)−1

F⊤D j

]−1
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= [
D j F

][ 1

m̄n(z)
In +

∥∥µ∥∥2Ψ

p

(
In +m̄n(z)

Ψ

p

)−1]−1[
D j F

]⊤.

Note that D j F is also an orthogonal matrix ([D j F ]−1 = [D j F ]⊤), hence the last equality.

4.B.3 Isolated Eigenvalues

Given the expression of Q̄ in the two-class setting, its singular points ξk satisfy

1

m̄n(ξk )
+

∥∥µ∥∥2 ψk
p

1+m̄n(ξk )ψk
p

= 0 ⇐⇒ 1+m̄n(ξk )
ψk

p
+

∥∥µ∥∥2m̄n(ξk )
ψk

p
= 0.

If ψk = 0, there is no solution. If ψk ̸= 0, then m̄n(ξk ) = −1
(∥µ∥2+1)

ψk
p

and we can inject this expression

into Equation (4.1),

1+ −1(∥∥µ∥∥2 +1
)
ψk
p

ξ− 1

n

n−1∑
l=0

ψl

1+ −1(
∥µ∥2+1

)
ψk
p

ψl
p

= 0

⇐⇒ ξk =
(∥∥µ∥∥2 +1

)ψk

p
+ 1

n

n−1∑
l=0

ψl

1− ψl /p(
∥µ∥2+1

)
ψk
p

=
(∥∥µ∥∥2 +1

)ψk

p

(
1+ c

n−1∑
l=0

[(∥∥µ∥∥2 +1
)ψk

ψl
−1

]−1
)

.

Since ξk must not lie inside the support of the distribution characterized by m̄n , it must also satisfy
limy↓0ℑm̄n(ξk + iy) = 0, at least for p,n,L large enough.

4.B.4 Eigenvector Alignments

Let us denote {(λk ,uk )}0Ék<n the eigenvalue-eigenvector pairs of K̃L . From the definition of the resol-
vent, we known that

Q̃(z) =
n−1∑
l=0

ul u⊤
l

λl − z
.

Therefore, with Cauchy’s integral formula (Proposition 2.15) and a positively-oriented simple closed
contour γk circling around λk and leaving the other eigenvalues outside, we have access to the quan-
tity ∑

0ÉlÉn−1
ξl=ξk

ul u⊤
l =− 1

2iπ

∮
γk

Q̃(z) dz

which is simply uk u⊤
k when the associated eigenvalue has multiplicity one. Then, we can calculate

the alignment of any vector a ∈Rn with the eigenspace associated to λk :

∑
0ÉlÉn−1
ξl=ξk

〈a,ul 〉2 =− 1

2iπ

∮
γk

a⊤Q̃(z)a dz.
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The asymptotic behavior of this quantity is therefore given by the deterministic equivalent Q̄ . With
residue calculus (Proposition 2.16), we compute

− 1

2iπ

∮
γk

Q̄(z) dz =− lim
z→ξk

(z −ξk )[D j F ]

[
1

m̄n(z)
In +

∥∥µ∥∥2Ψ

p

(
In +m̄n(z)

Ψ

p

)−1]−1

[D j F ]⊤

=−[D j F ]

(
lim

z→ξk

(z −ξk )

[
1

m̄n(z)
In +

∥∥µ∥∥2Ψ

p

(
In +m̄n(z)

Ψ

p

)−1]−1)
[D j F ]⊤.

If l ∈ {0, . . . ,n −1} is such that ψl ̸=ψk , then

lim
z→ξk

z −ξk

1
m̄n (z) +

∥µ∥2 ψl
p

1+m̄n (z)
ψl
p

= 0

whereas if ψl =ψk , L’Hôpital’s rule yields

lim
z→ξk

z −ξk

1
m̄n (z) +

∥µ∥2 ψk
p

1+m̄n (z)
ψk
p

=
d

dz [(z −ξk )m̄n(z)]z=ξk

d
dz

[
1+

∥∥µ∥∥2 m̄n (z)
ψk
p

1+m̄n (z)
ψk
p

]
z=ξk

= m̄n(ξk )∥∥µ∥∥2 m̄′
n (ξk )

ψk
p(

1+m̄n (ξk )
ψk
p

)2

=
m̄n(ξk )

(
1+m̄n(ξk )ψk

p

)2

∥∥µ∥∥2m̄′
n(ξk )ψk

p

.

Recalling that m̄n(ξk ) = −1
(∥µ∥2+1)

ψk
p

, we have 1+m(ξk )ψk
p = ∥µ∥2

∥µ∥2+1
. Hence,

lim
z→ξk

z −ξk

1
m̄n (z) +

∥µ∥2 ψk
p

1+m̄n (z)
ψk
p

=
∥∥µ∥∥2∥∥µ∥∥2 +1

1(∥∥µ∥∥2 +1
)
ψk
p

m̄n(ξk )

m̄′
n(ξk )

=−
∥∥µ∥∥2∥∥µ∥∥2 +1

m̄2
n(ξk )

m̄′
n(ξk )

.

Let us calculate an expression of
m̄2

n (ξk )
m̄′

n (ξk )
. Differentiating in z Equation (4.1) yields

m̄n(z)+ zm̄′
n(z) = c

n−1∑
r=0

m̄′
n(z)ψr

p(
1+m̄n(z)ψr

p

)2

thus,

m̄2
n(ξk )

m̄′
n(ξk )

=−ξk m̄n(ξk )+ c
n−1∑
r=0

m̄n(ξk )ψr
p(

1+m̄n(ξk )ψr
p

)2

= 1− c
n−1∑
r=0

m̄n(ξk )ψr
p

1+m̄n(ξk )ψr
p

+ c
n−1∑
r=0

m̄n(ξk )ψr
p(

1+m̄n(ξk )ψr
p

)2 from Equation (4.1)
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m̄2
n(ξk )

m̄′
n(ξk )

= 1− c
n−1∑
r=0

[
m̄n(ξk )ψr

p

1+m̄n(ξk )ψr
p

]2

.

Finally, since m̄n(ξk ) = −1
(∥µ∥2+1)

ψk
p

, we obtain

lim
z→ξk

z −ξk

1
m̄n (z) +

∥µ∥2 ψk
p

1+m̄n (z)
ψk
p

=−
∥∥µ∥∥2∥∥µ∥∥2 +1

1− c
n−1∑
l=0

[
m̄n(ξk )ψl

p

1+m̄n(ξk )ψl
p

]2

=−
∥∥µ∥∥2∥∥µ∥∥2 +1

(
1− c

n−1∑
l=0

[(∥∥µ∥∥2 +1
)ψk

ψl
−1

]−2
)

.

Hence,

− 1

2iπ

∮
γk

Q̄(z) dz = [D j F ]Diag(ζ0, . . . ,ζn−1)[D j F ]⊤

with ζk = ∥µ∥2

∥µ∥2+1

(
1− c

∑n−1
l=0

[(∥∥µ∥∥2 +1
)
ψk
ψl

−1
]−2

)
. This shows that, if ξk is an isolated eigenvalue, then

ζk is the asymptotic value of the alignment 〈uk , [D j F ]·,k〉2.

4.C K -Classes Online Kernel Spectral Clustering Algorithm

4.C.1 General Presentation and Simulations

We use a set of spike eigenvectors {u(t )
k }k∈K (with a set of indices K ) to estimate the |K |-dimensional

“trend” of each class. That is, denoting C [t ] the class of xt , we consider the following model[
u(t )

k

]
i
=

[
h(t )

k,C [t−n+i ] +ϵ
(t )
k

]
i

where, for k ∈K , h(t )
k,C ∈Rn is the “trend” of class C and ϵ(t )

k is a centered noise vector. A deeper anal-
ysis of the deterministic equivalent of Theorem 4.6 is needed to properly understand the behavior of
the vectors h(t )

k,C . From our general understanding so far, it is expected that they are linear combina-
tions of a few dominant eigenvectors of T . Using this approach, we are able to estimate the trends
from {u(t )

k }k∈K (see the left part of Figure 4.9). Each point is then associated to the class whose curve
is the nearest in the |K |-dimensional space. The details of this algorithm are given in the following
subsection.

This algorithm is tested on a stream made of T = 21000 centered raw-images from the Fashion-
MNIST dataset (Xiao et al., 2017). Their dimension is p = 784 and we want to discriminate between
trouser, coat and ankle boot images in an online fashion. We choose n = n⋆ = 653 and L = L⋆ =
226 and we use the 5 dominant eigenvectors of K (t )

L⋆
for the estimation (thus |K | = 5).

In Figure 4.9 are displayed the shape of the dominant eigenvector u(t )
0 at a given time during the

execution of the algorithm with the estimated trends of each class (this is only the first dimension of a
5-dimensional trend) and the mean clustering error at t0+∆t of a data point seen at t0 with the overall
classification error obtained after a majority vote. Surprisingly, the classification error curve has an
inverse-U shape: it is easier to discriminate between the trends on the edges of the eigenvector than
in the middle. The majority vote leads to an overall classification error which is close to the top of the
inverted U. Unfortunately, in practice, it is hard to determine whether we are in a U-shaped / stable /
inverted-U-shaped setting and, without this knowledge, a majority vote is the best decision policy.

Here, the overall classification error is 7.348% while a standard T ×T offline kernel spectral clus-
tering has only a 3.671% error rate.
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Figure 4.9: Clustering on Fashion-MNIST images (trouser vs. coat vs. ankle boot). Left: Dominant
eigenvector of K (t )

L⋆
. Solid curves are the estimated trend of each class h(t )

k,C . Right: Classification error
against delay ∆t . This is the mean classification error at time t0 +∆t of a point arrived at t0. The
green dashed line indicate the overall classification error when the class is chosen by a majority vote.
Experimental setting: T = 21000, n⋆ = 653, p = 784, L⋆ = 226.

4.C.2 Details of the Algorithm

We consider a set K of indices of spikes and the following model for u(t )
k , k ∈K ,[

u(t )
k

]
i
=

[
h(t )

k,C [t−n+i ] +ϵ
(t )
k

]
i
, 1 É i É n

where h(t )
k,C ∈Rn is the trend of class C and ϵ(t )

k is a centered noise vector.

Our goal is to estimate the trend h(t )
k,C from the eigenvectors {u(t )

k }k∈K . Since we assume they are
linear combinations of a few dominant eigenvectors of T , we define a set of indices K∗ specifying the
eigenvectors {gk }k∈K∗ which we expect the h(t )

k,C ’s to be linear combinations of.

We denote Ĉ (t )[s] the class of xt−n+s estimated at time t .
In order to compute an estimation {Ĉ (t )[i ]}1ÉiÉn of the classes at a given time t , we propose a two-

step algorithm. Firstly, we compute a rough estimation {Ĉ (t )
0 [i ]}1ÉiÉn of the classes by following the

K paths with an exponential smoothing in the coordinates of the eigenvectors {u(t )
k }k∈K , this is called

the pre-clustering step. Then, we refine this estimation with projections on Span{gk }k∈K∗ , this is the
clustering step.

In the following, we drop the time dependency when it is not needed to ease notations.

Pre-Clustering Step

Given the number of classes K and the eigenvectors {u(t )
k }k∈K , we consider the set of n points in R|K |

defined by the coordinates of each eigenvector: [uK ]i
def= (

[uk ]i
)

k∈K for 1 É i É n. As i goes from 1 to
n, these points draw K paths. The goal is to guess which path (and therefore which class) each point
belongs to.

Iteration Let us suppose we have already estimated Ĉ0[1], . . . ,Ĉ0[i −1] and the first i −1 coordinates

of the vectors {h̃k }k∈K such that
[
h̃k

]
j is an estimation of

[
hk,Ĉ0[ j ]

]
j

(initialization is discussed later).

As for {uk }k∈K , we see {h̃k }k∈K as a set of n points inR|K |, which have to be estimated. The estimation
of the i -th point

[
h̃K

]
i is induced by the class estimate Ĉ0[i ] — the corresponding path is updated
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with an exponential smoothing:

[
h̃K

]
i = Eα(i ,uK , h̃K ,Ĉ0[i ])

def=
α[uK ]i +θ

[
h̃K

]
I [Ĉ0[i ],i ]

α+θ
where θ = 1−α

i − I [Ĉ0[i ], i ]

[
1+ 1−α

α

(
1− (1−α)i−I [Ĉ0[i ],i ]−1

)]
,

I [Ĉ0[i ], i ] = max{1 É j É i −1 | Ĉ0[ j ] = Ĉ0[i ]} is the index of the last seen point in Ĉ0[i ] and α ∈ [0,1] is
the smoothing parameter. The reasons for such a formula are detailed in Appendix 4.D.

However, Ĉ0[i ] is chosen as the class which minimizes the growth of the corresponding path:

Ĉ0[i ] = argmin
Ĉ ∈{

Ĉ1,...,ĈK
}
∥∥∥Eα(i ,uK , h̃K ,Ĉ )− [

h̃K

]
I [Ĉ ,i ]

∥∥∥
i − I [Ĉ , i ]

.

Indeed, by doing so, we minimize the Lipschitz constant of the estimated trend and ensure some
regularity.

Initialization From the regularity of the true trend, hk,C is almost flat on its very first coordinates.
Therefore, we can initialize the values Ĉ0[i ] for 1 É i É h with a standard clustering algorithm applied
to {[uK ]i }1ÉiÉh . h is a parameter which should be taken as small as possible to stay in a domain where
the trends are almost flat while still having a few representatives of each class. The computation of
{
[
h̃K

]
i }1ÉiÉh follows from the class estimates, as presented above.

We found that a hierarchical clustering algorithm and h ≈ 10K worked well for the initialization.
As for the smoothing parameter, a good value is α≈ 0.15.

The pre-clustering step is summarized in Algorithm 2.

Algorithm 2: Pre-Clustering

Input: K , {uk }k∈K , h, α
Output: {Ĉ0[i ]}1ÉiÉn

Set Ĉ0[i ] for i = 1 to h with agglomerative clustering
for i = 1 to h do[

h̃K

]
i ← Eα(i ,uK , h̃K ,Ĉ0[i ])

end
for i = h +1 to n do

Ĉ0[i ] ← argminĈ ∈{Ĉ1,...,ĈK }

∥∥∥Eα(i ,uK ,h̃K ,Ĉ )−[
h̃K

]
I [Ĉ ,i ]

∥∥∥
i−I [Ĉ ,i ][

h̃K

]
i ← Eα(i ,uK , h̃K ,Ĉ0[i ])

end

Clustering Step

The class estimates obtained after the pre-clustering step are usually not very satisfying but still re-
main a good basis to estimate hk,C with regressions.

In the second step of the algorithm, we are given a set {gk }k∈K∗ of eigenvectors of T . It is supposed
that the trends {hk,C }k∈K are mixtures of these eigenvectors.
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From the class estimates {Ĉ [i ]}1ÉiÉn , we can compute an estimation ĥK ,Ĉ of the trend of each

estimated class Ĉ with a linear regression

ĥk,Ĉ = gK∗βk,Ĉ where βk,Ĉ = argmin
β∈R|K∗|

∥∥[uk ]Ĉ − [
gK∗

]
Ĉβ

∥∥2

where we use the notation [·]Ĉ to represent the restriction to Ĉ .
Then, new class estimates can be computed by associating each point to the class whose trend is

the closest:
Ĉ [i ] = argmin

Ĉ ∈{
Ĉ1,...,ĈK

}
∥∥∥[uK ]i −

[
ĥK ,Ĉ

]
i

∥∥∥.

We repeat this process until convergence of the class estimates. The classification step is summa-
rized in Algorithm 3.

Algorithm 3: Clustering

Input: K , {Ĉ0[i ]}1ÉiÉn , {uk }k∈K , {vk }k∈K∗
Output: {Ĉ [i ]}1ÉiÉn

for i = 1 to n do
Ĉ [i ] ← Ĉ0[i ]

end
repeat

for Ĉ ∈ {Ĉ1, . . . ,ĈK } do

ĥK ,Ĉ ← gK∗

([
gK∗

]⊤
Ĉ

[
gK∗

]
Ĉ

)−1[
gK∗

]⊤
Ĉ

[uK ]Ĉ
end
for i = 1 to n do

Ĉ [i ] ← argminĈ ∈{
Ĉ1,...,ĈK

}∥∥∥[uK ]i −
[

ĥK ,Ĉ

]
i

∥∥∥
end

until convergence

Final Algorithm

In an online fashion, pre-clustering can be performed as a warm-up during the first n time steps.
Then, as t Ê n, only the clustering step is needed: the classes {Ĉ (t−1)[s]}1ÉsÉn estimated at t − 1 (or
during pre-clustering if t = n) serve as a good basis to estimate the classes at time t (both Ĉ (t−1)[s+1]
and Ĉ (t )[s] are estimates of the class of xt−n+s ). Moreover, the few interesting eigenvectors u(t )

K of K (t )
L

can be quickly computed with a power iteration algorithm starting at u(t−1)
K (they do not differ much

from one time step to another). The final algorithm is presented in Algorithm 4.

4.D Exponential Smoothing with Missing Data

Let (yt )tÊ0 be a time series. Assume we want to compute its trend (st )tÊ0. A common technique is to
perform an exponential smoothing:

s0 = y0 and st+1 =αyt+1 + (1−α)st for all t Ê 0

where α ∈ [0,1] is the smoothing parameter. It acts as a low-pass filter which removes high-frequency
noise.

103



Chapter 4. A Random Matrix Analysis of Data Stream Clustering: Coping With Limited Memory
Resources

Algorithm 4: Online Kernel Spectral Clustering

Input: K , K , {gk }k∈K∗ , h, α
Output: {Ĉt [s]}1ÉsÉn

nÉtÉT
for t = 1 to T do

Get a new point xt into the pipeline

Update K (t−1)
L into K (t )

L

u(t )
K ← PowerIteration(K (t )

L ,u(t−1)
K )

if 1 É t É n then
Do an iteration as in Algorithm 2

end
if t Ê n then

Compute
{
Ĉ (t )[s]

}
1ÉsÉn according to Algorithm 3 with

{
Ĉ (t−1)[s]

}
1ÉsÉn−1

end
end

Let us now assume that we do not have access to (yt )tÊ0 at each time step and we want to compute
st+h (h Ê 1) with yt+h and st only. Expanding the recurrence relation, we have

st+h =αyt+h +α
h−1∑
k=1

(1−α)k yt+h−k + (1−α)h st .

We propose to replace the unknown values yt+h−k for 1 É k É h −1 by the linear interpolation of
the trend:

st+h =αyt+h +α
h−1∑
k=1

(1−α)k
[

k

h
st +

h −k

h
st+h

]
+ (1−α)h st

=αyt+h + α

h

(
st

h−1∑
k=1

k(1−α)k + st+h

h−1∑
k=1

k(1−α)h−k

)
+ (1−α)h st .

Using the following formulae,

h−1∑
k=1

k(1−α)k = 1−α
α

(
1−h(1−α)h−1

)
+

(
1−α
α

)2(
1− (1−α)h−1

)
and

h−1∑
k=1

k(1−α)h−k = 1−α
α

(h −1)−
(

1−α
α

)2(
1− (1−α)h−1

)
,

we have(
α+ 1−α

h

[
1+ 1−α

α

(
1− (1−α)h−1

)])
st+h =αyt+h + 1−α

h

[
1+ 1−α

α

(
1− (1−α)h−1

)]
st .

4.E Proof of Proposition 4.12

Let fL : x ∈ [0,π] 7→
[(∥∥µ∥∥2 +1

) sinc( x
2 )

sinc((2L−1) x
2 )

−1

]−2

. Then,

⌊n/2⌋∑
l=1

[(∥∥µ∥∥2 +1
)ψ0

ψl
−1

]−2

=
⌊n/2⌋∑
l=1

fL

(
2lπ

n

)
.
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For all δ ∈] 1
2 , 2

3 [, we can split this sum into

⌊n/2⌋∑
l=1

fL

(
2lπ

n

)
=

⌊nδ/2⌋∑
l=1

fL

(
2lπ

n

)
+

⌊n/2⌋∑
l=⌊nδ/2⌋+1

fL

(
2lπ

n

)

=
⌊nδ/2⌋∑

l=1

[ ∥∥µ∥∥2 +1

sinc((2L−1) lπ
n )

[
1+O

((
lπ

n

)2)]
−1

]−2

+
⌊n/2⌋∑

l=⌊nδ/2⌋+1

fL

(
2lπ

n

)

=
⌊nδ/2⌋∑

l=1

[ ∥∥µ∥∥2 +1

sinc((2L−1) lπ
n )

−1

]−2

+
⌊nδ/2⌋∑

l=1
O

((
lπ

n

)2)
+

⌊n/2⌋∑
l=⌊nδ/2⌋+1

fL

(
2lπ

n

)

=
⌊nδ/2⌋∑

l=1

[ ∥∥µ∥∥2 +1

sinc((2L−1) lπ
n )

−1

]−2

+O
(
n3δ−2

)
+

⌊n/2⌋∑
l=⌊nδ/2⌋+1

fL

(
2lπ

n

)

where we have used the Taylor expansions sinc x = 1+O (x2) and (1+x)−2 = 1+O (x) as x → 0. In order
to control the last sum, notice that, for all x ∈]0,π], we have,

fL(x) =
[(∥∥µ∥∥2 +1

)
−

sinc((2L−1) x
2 )

sinc( x
2 )

]−2[ sinc( x
2 )

sinc((2L−1) x
2 )

]−2

and, since
sinc((2L−1) x

2 )
sinc( x

2 ) = νL (x)
2L−1 É 1,

fL(x) É 1∥∥µ∥∥4

[
sin((2L−1) x

2 )

(2L−1)sin( x
2 )

]2

É 1∥∥µ∥∥4(2L−1)2 sin2( x
2 )

.

Hence,

⌊n/2⌋∑
l=⌊nδ/2⌋+1

fL

(
2lπ

n

)
É ⌊n/2⌋−⌊nδ/2⌋∥∥µ∥∥4(2L−1)2 sin2( nδπ

2n )
= ⌊n/2⌋−⌊nδ/2⌋∥∥µ∥∥4(2L−1)2

(
nδπ
2n +O (n3(1−δ))

)2 =O
(
n1−2δ

)
.

Finally, with δ= 3
5 , we have,

⌊n/2⌋∑
l=1

[(∥∥µ∥∥2 +1
)ψ0

ψl
−1

]−2

=
⌊n/2⌋∑
l=1

[ ∥∥µ∥∥2 +1

sinc((2L−1) lπ
n )

−1

]−2

+O
(
n−1/5).

105



106



Part II

Tensor Unfolding Approaches: Insights
Into the Computational Limits
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Chapter 5

A Random Matrix Approach to
Low-Multilinear-Rank Tensor
Approximation

INFORMATION retrieval from large amounts of data has become a common task of signal processing
and machine learning in the past decades. Often, these data have several modes as they may come

from various sources, modalities, domains, and so on. Tensors (multi-way arrays) are therefore a nat-
ural representation for such datasets — they appear in multiple areas such as brain imaging (Zhou
et al., 2013), neurophysiological measurements (Seely et al., 2016), community detection (Anandku-
mar et al., 2013), compression of hyperspectral images (Li and Li, 2010), spatio-temporal gene expres-
sion (Liu et al., 2022), recommender systems (Karatzoglou et al., 2010; Rendle and Schmidt-Thieme,
2010; Frolov and Oseledets, 2017) and topic modeling (Anandkumar et al., 2014). Indeed, tensors as
multi-way arrays provide a more detailed representation of data than mere matrices (two-way arrays)
as they convey a structural information. For instance, the modes of a data tensor can represent pixel
× pixel × wavelength × sample in hyperspectral imaging (Zhang et al., 2013; Kanatsoulis et al., 2018),
time × spatial scale × electrode in the EEG analysis by Acar et al. (2007) or neuron × time × stimuli in
the study of the visual cortex by Rabinowitz et al. (2015).

In an information retrieval context, it is common to make use of tensor decompositions in order to
estimate a sought signal. In their fMRI study, Hunyadi et al. (2017) perform a blind source separation
via a joint tensor decomposition on a channel × time × patient array, whereas Williams et al. (2018)
use a low-rank tensor approximation on a neuron × time × trial array as a dimensionality reduction
technique to study neural dynamics. In fact, supposing that the signal has a low-rank structure is
a natural sparsity assumption (Kadmon and Ganguli, 2018; Anandkumar et al., 2014), and low-rank
tensor approximations are key tools to extract information from multi-way data.

In the present chapter, we propose a random matrix analysis of a general low-rank information
+ noise tensor model and precisely quantify the amount of information which can be recovered with
a low-rank tensor approximation depending on the signal-to-noise ratio (SNR). For a more general
introduction to tensors than the elements we gave in Section 2.4, we refer the reader to Comon (2014,
2009); Landsberg (2011); Hackbusch (2012) and, for an emphasis on statistical learning applications,
Bi et al. (2021); Sun et al. (2021). In the remainder of the introduction, the main concepts and chal-
lenges behind low-rank tensor estimation are presented in Section 5.0.1. Then, Section 5.0.2 intro-
duces some important related works. Our main results are finally summarized in Section 5.0.3. Recall
that tensor-related notations, operations and decompositions are properly defined in Section 2.4.
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5.0.1 Low-Rank Tensor Estimation

What is meant by a low-rank approximation of a tensor? And how is the rank of a tensor actually
defined? Let us start with a familiar matrix case: a matrix M ∈ Rn1×n2 is a two-way array (or order-2
tensor). A singular value decomposition (SVD) allows us to write M in a compact way as the sum of R
rank-1 terms, M =∑R

i=1σi ui v⊤
i =UΣV ⊤ where U , V are respectively n1 ×R and n2 ×R matrices with

orthonormal columns and Σ is the R ×R diagonal matrix of singular values. The rank of M is here
the minimal number of rank-1 terms in which it can be exactly decomposed. Extending this notion to
tensors therefore seems straightforward: a tensor1 T ∈ Rn1×n2×n3 has rank R if it is the minimal num-
ber of rank-1 terms in which it can be exactly decomposed, T =∑R

i=1σi ai ⊗bi ⊗ci . What we have just
described is the canonical polyadic decomposition (CPD) of T, it dates back to Hitchcock (1927) and
is unique under very mild conditions (Kolda and Bader, 2009). However, we have lost an important
property in this process: the unit vectors ai (resp. bi , ci ) are, in general, no longer orthonormal. Con-
versely, retaining the orthonormality property inevitably results in the loss of the diagonality property,
T =∑r1

i=1

∑r2
j=1

∑r3
k=1Gi , j ,k ui ⊗v j ⊗wk . This latter decomposition is called a Tucker decomposition and

dates back to Tucker (1966). In fact, the best way to represent T with a Tucker decomposition is to
choose the ui (resp. vi , wi ) as the left singular vectors of the unfolding of T along mode 1 (resp. 2, 3)2.
This is called the multilinear SVD (MLSVD, De Lathauwer et al., 2000b) and gives rise to a new defini-
tion of rank: the multilinear-rank (r1,r2,r3). Note that, in the matrix case, r1 = r2 = R since both the
diagonality and orthonormality properties are verified. However, r1,r2,r3 are, in general, not equal in
the tensor case, but max(r1,r2,r3) É R É min(r1r2,r2r3,r1r3) (Equation (2.12)). See, e.g., Sidiropoulos
et al. (2017) for details. Other relevant references for the reader interested in tensor decompositions
are Kolda and Bader (2009); Cichocki et al. (2015); Rabanser et al. (2017).

Given an order-d tensor T ∈ Rn1×...×nd of possibly very high rank, we are interested in finding a
low-rank approximation, i.e., an n1 × . . .×nd tensor X which minimizes the distance ∥T −X∥F on a
set of low-rank tensors. Yet, the problem of the best rank-R approximation of a tensor is ill-posed as
soon as R > 1 because the set of rank-R tensors is not closed (Kolda and Bader, 2009). Instead, we shall
consider the best low-multilinear-rank problem, which is always well-posed,

min
Rank(X)É(r1,...,rd )

∥T−X∥2
F. (5.1)

It is well known in the matrix case that the best rank-R approximation can be easily computed by
truncating the SVD to its R most energetic terms (Eckart and Young, 1936; Mirsky, 1960). Could this
also be true for the MLSVD? Unfortunately, counter-examples exist (Kolda, 2003), showing that there is
no tensor equivalent of the Eckart-Young-Mirsky theorem. Worse still, Problem (5.1) is in fact NP-hard
(Hillar and Lim, 2013). Nevertheless, despite not being the best low-multilinear-rank approximation,
the truncated MLSVD T̂ remains a very good “first guess” as it verifies ∥T−T⋆∥F É ∥T−T̂∥F É

p
d∥T−

T⋆∥F where T⋆ denotes a solution to Problem (5.1) and d is the order of the tensor (Grasedyck et al.,
2013; Hackbusch, 2012). It is a cheap (it consists only in d standard matrix SVDs) and quasi-optimal
low-multilinear-rank approximation of T. Moreover, it is often used as an initialization of numerical
methods which estimate a solution to Problem (5.1), among which the most common is the higher-
order orthogonal iteration (HOOI) algorithm (Kroonenberg and de Leeuw, 1980; Kapteyn et al., 1986;
De Lathauwer et al., 2000a).

Another motivation for the analysis of the low-multilinear-rank approximation problem is that it
has also a practical interest for the numerical computation of the canonical polyadic decomposition
(CPD). Indeed, when dealing with large tensors, it is computationally more efficient to first compress
the tensor with a low-multilinear-rank approximation and then compute the CPD on the smaller core

1It is chosen of order 3 for simplicity of exposure.
2This is properly defined in Section 2.4.2.
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tensor rather than computing the CPD of the large tensor directly (Bro and Andersson, 1998). This is
done, e.g., by the cpd function of the MATLAB toolbox Tensorlab (Vervliet et al., 2016).

5.0.2 Related Work

Multilinear SVD (MLSVD) has a wide range of applications and is often used to extract relevant infor-
mation from multi-way arrays. For instance, it has been used in human motion recognition (Vasilescu,
2002), face recognition (Vasilescu and Terzopoulos, 2003), handwritten digit classification (Savas and
Eldén, 2007) but also genomics (Omberg et al., 2007, 2009; Muralidhara et al., 2011) and syndromic
surveillance (Fanaee-T and Gama, 2015).

The analysis of spiked tensor models — i.e., low-rank perturbations of large random tensors — has
started with the introduction by Montanari and Richard (2014) of the rank-1 symmetric spiked tensor
model,T =βx⊗d+Nwith ∥x∥ = 1,NGaussian noise andβ a parameter controlling the signal-to-noise
ratio (SNR). They show that estimation of x from T is theoretically possible as soon as β is above a cer-
tain threshold βc behaving like

√
d logd , which is reminiscent of the now well-known spiked matrix

model where signal reconstruction is only possible above a critical threshold (Péché, 2006) — a phe-
nomenon called the BBP phase transition (Baik et al., 2005). The behavior of singular values and sin-
gular vectors of spiked matrix models is comprehensively studied by Benaych-Georges and Nadaku-
diti (2012). Contrary to the matrix case however, Montanari and Richard (2014) make the disturbing
observation that none of the polynomial-time estimation algorithms among tensor unfolding, power
iteration and approximate message passing (AMP) succeed unless β diverges as the dimensions of the
tensor grow large. The results of Hopkins et al. (2015, 2017) suggest that no polynomial-time algo-

rithm can succeed unless β≳ N
d−2

4 , where N scales as the dimensions of the data tensor. While Perry
et al. (2020) show that the information-theoretic threshold is of order 1, this indicates the existence
of a computational-to-statistical gap in spiked tensor estimation, as in a myriad of other problems
(Bandeira et al., 2018; Zdeborová and Krzakala, 2016).

The landscape of the rank-1 symmetric spiked tensor model is studied by Ben Arous et al. (2019),
who show that the number of local optima to Problem (5.1) grows exponentially with the size of the
tensor, but all lie close to a subspace orthogonal to the sought solution, except for one if β exceeds
a critical threshold βc . Completing this analysis, Jagannath et al. (2020) show3 the existence of two
close but different thresholds βs < βc such that the solution aligned with the underlying signal is a
local minimum of Problem (5.1) as soon as β > βs but becomes a global one only if β > βc . Relying
on the Kac-Rice method, Ros et al. (2019) thoroughly study such high-dimensional landscapes and
classify the different behaviors and phase transitions which can occur.

So far, we have only referred to works dealing with the rank-1 symmetric case, but there are also
some studies on higher-(low-)rank spiked models. Chevreuil and Loubaton (2018) give a sufficient
(but not necessary) condition for the non-detectability of a rank-R asymmetric signal perturbed by
an additive Gaussian noise. Chen et al. (2021) also discuss signal detectability in the rank-R sym-
metric case. The statistical inference of finite rank tensors is studied by Chen et al. (2022) who iden-
tify the limit free energy of the model in terms of a variational formula. Zhang and Xia (2018) con-
sider a general low-multilinear-rank signal P+Gaussian noise N model and bring to light the same
statistical-to-computational gap: if ∥P∥F is above a statistical threshold of order 1 then Problem (5.1)
has a solution which is aligned with the signal but is computationally intractable unless ∥P∥F is above

a computational threshold of order N
d−2

4 . In this strong SNR regime, the higher-order orthogonal it-
eration (HOOI) algorithm (De Lathauwer et al., 2000a) is minimax-optimal. In fact, it is also proved by
Ben Arous et al. (2020) that, with Langevin dynamics and gradient descent, the algorithmic thresh-
old behaves like Nα with α > 0. Other algorithmic thresholds have been shown as well for semi-

3The setting considered by Jagannath et al. (2020) is more general than the one of Ben Arous et al. (2019) because the noise
in their model is not necessarily symmetric but the perturbation is still a rank-1 symmetric tensor.
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definite and spectral relaxations of the maximum likelihood problem (Hopkins et al., 2015, 2016; Kim

et al., 2017). AMP and tensor power iteration algorithms achieve N
d−1

2 (Lesieur et al., 2017; Huang

et al., 2022) while tensor unfolding methods (truncated MLSVD and HOOI algorithm) achieve N
d−2

4

as already conjectured by Montanari and Richard (2014) and later proven by Hopkins et al. (2015);
Ben Arous et al. (2023) in the rank-1 case. The convergence of the HOOI algorithm towards a local
maximum for a sufficiently close initialization is proven by Xu (2018) and Feldman and Donoho (2023)
show that it achieves exact recovery of a rank-1 perturbation in the large N regime when it is initialized
with the dominant singular vectors of the unfoldings.

Recently, a new approach relying on tools from random matrix theory has broaden the under-
standing of spiked tensor models. In particular, Goulart et al. (2022) study the rank-1 symmetric case
and are able to recover explicitly the same βs threshold as Jagannath et al. (2020) as well as to pre-
cisely quantify the alignment between a solution to Problem (5.1) and the signal. A similar analysis
is carried out by Seddik et al. (2022) for the more general asymmetric case, relying solely on classical
techniques from random matrix theory. Such tools show promise for the theoretical understanding of
learning from tensor data (Seddik et al., 2023b). In particular, the results of Ben Arous et al. (2023) and
Feldman (2023) on long random matrices, similar to those considered in this work, provide instructive
insight into the recovery performance of tensor unfolding methods.

5.0.3 Summary of Contributions

In low-rank tensor approximation, tensor unfolding methods achieve the best known performance
among polynomial-time algorithms. Motivated by several works suggesting that such method could
actually reach the computational threshold (Hopkins et al., 2015, 2017; Zhang and Xia, 2018; Wein
et al., 2019), we propose a thorough random matrix analysis of the low-multilinear-rank tensor ap-
proximation problem.

Consider the general spiked tensor model,

T =P+ 1p
N
N ∈Rn1×...×nd , Ni1,...,id

i.i.d.∼ N (0,1), (5.2)

where d Ê 3 is the order of the tensor, N is an additive Gaussian noise, N is a parameter controlling
the size of the tensor such that the ratio nℓ/N is constant4 (at least for N above a certain threshold
value N0) for all ℓ ∈ {1, . . . ,d} (for instance, N = n1 or N = ∑d

ℓ=1 nℓ) and P is a low-multilinear-rank
deterministic tensor, i.e., which can be decomposed as

P=
r1∑

q1=1
. . .

rd∑
qd=1

Hq1,...,qd [x (1)
q1

⊗ . . .⊗x (d)
qd

]
def=

�
H; X (1), . . . , X (d)

�
, (5.3)

with H ∈Rr1×...×rd and X (ℓ) an nℓ× rℓ matrix with orthonormal columns x (ℓ)
qℓ . The range of X (ℓ) is the

ℓ-th singular subspace of P. This decomposition is illustrated for the case d = 3 in Figure 5.1. Model
(5.2) with P as in Equation (5.3) is the most general spiked tensor model — i.e., low-rank perturbation
of a large random tensor. Indeed, any of the models referred to in the previous Section 5.0.2 fall into
this definition since decomposition (5.3) always exists and low CP-rank is equivalent to low multilinear
rank thanks to the inequality maxℓ{rℓ} É R É minℓ{

∏
ℓ′ ̸=ℓ rℓ′ } (Equation (2.12)).

In the regime where N → +∞ — representing the fact that, in practice, the dimensions of the
tensor are large compared to its rank —, we study the estimation ofP fromT with a truncated MLSVD,

4This ensures that the spectral norm of 1p
N
N is of order 1 (Tomioka and Suzuki, 2014).
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n1
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n3

P =
r1

r2

r3

Hr1

n1X (1)

r2

n2

X (2)

r3

n3 X (3)

Figure 5.1: Illustration of the Tucker decomposition (5.3) of an n1 ×n2 ×n3 tensor P with multilinear
rank (r1,r2,r3). H is the r1 × r2 × r3 core tensor and X (1), X (2), X (3) are matrices with orthonormal
columns spanning the singular subspaces of P.

which serves as initialization of the HOOI algorithm. In particular, we reveal that the interesting non-

trivial regime is characterized by theΘ(N
d−2

2 ) quantity5 σN = 1
N

∏d
ℓ=1

p
nℓ.

• If ∥P∥2
F/σN −−−−−→

N→+∞
0, then the noise completely masks the signal, and truncated MLSVD fails to

recover P.

• If ∥P∥2
F/σN −−−−−→

N→+∞
+∞, then the signal clearly stands out from the noise, and reconstruction of

P with a truncated MLSVD is easy.

• If ∥P∥2
F/σN =Θ(1) as N →+∞, then we are precisely in the non-trivial regime between the two

previous situations, and truncated MLSVD may partially recover P.

It is the analysis of this last regime which is of practical interest. Given the low-multilinear-rank ap-
proximation T̂ = �Ĝ;Û (1), . . . ,Û (d)� obtained with a truncated MLSVD of T, we quantify how well T̂
reconstructs P in this non-trivial regime. To do so, we study the spectral properties of the unfoldings
(i.e., matricizations) of the tensor T, i.e., the nℓ×

∏
ℓ′ ̸=ℓnℓ′ matrices T (ℓ) whose columns are mode-ℓ

fibers of T and the columns of Û (ℓ) are its dominant left singular vectors. Such long matrices (the
second dimension grows faster than the first one) have already been studied by Ben Arous et al. (2023)
in order to analyze the properties of tensor-unfolding methods in the particular setting of a rank-1
spike. Here, we tackle this problem with a highly different approach relying solely on classical tools
from random matrix theory (Couillet and Liao, 2022) and give very general results on the spiked tensor
model that go beyond the specific rank-1 one case. Moreover, we justify the practical use of truncated
MLSVD as an initialization of the HOOI algorithm by showing its optimality in the large N regime.

Although the spectrum of T (ℓ)T (ℓ)⊤, ℓ ∈ {1, . . . ,d}, diverges as N →+∞, we show that its eigenval-
ues (i.e., the squared singular values of T (ℓ)) gather in an interval [µ(ℓ)

N ±2σN ] with µ(ℓ)
N = 1

N

∏
ℓ′ ̸=ℓnℓ′ =

Θ(N d−2). More precisely, the empirical spectral distribution of the centered-and-scaled matrix
1
σN

[
T (ℓ)T (ℓ)⊤−µ(ℓ)

N Inℓ

]
converges weakly to the semicircle distribution on [−2,2] (see Figure 5.3, The-

orem 5.1 and Corollary 5.2). Furthermore, we show that a BBP phase transition phenomenon occurs:
for each singular value of P (ℓ) (the unfolding ofP along mode ℓ) which is above the threshold

p
σN , an

5Note that this corresponds to the regime of the algorithmic threshold but, here, our measure of the signal power is ∥P∥2
F

(and not ∥P∥F) hence theΘ(N
d−2

2 ) instead ofΘ(N
d−2

4 ).
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Figure 5.2: Alignments between singular subspaces (see Section 5.1.2) of the observation T =p
ωP◦+

1p
N
N and of the signal P◦, with ∥P◦∥2

F =
p

n1n2n3
N , as a function of the signal-to-noise ratio ω. The-

oretical alignments (Theorem 5.5) achieved with truncated MLSVD are compared with simulations
and those achieved with the HOOI algorithm. Empirical results are averaged over 10 trials, with er-
ror bars representing standard deviation. Experimental setting: d = 3, (n1,n2,n3) = (100,200,300),
N = n1 +n2 +n3 and (r1,r2,r3) = (3,4,5).

eigenvalue of T (ℓ)T (ℓ)⊤ isolates itself on the right side of the bulk (see Figure 5.3) and its correspond-
ing eigenvector (i.e., left singular vector of T (ℓ)) is aligned with the corresponding singular subspace
of P. The position of the isolated eigenvalue and this alignment are efficiently predicted by Theorem
5.5 (see also Figure 5.3).

As a result, Figure 5.2 plots, for an order-3 tensor, as a function of the signal-to-noise ratio (SNR)
ω= ∥P∥2

F/σN , the alignments between the singular subspace of the signal P spanned by X (ℓ) and the

dominant singular subspace of the observation T spanned by Û (ℓ). Solid curves are the alignments
predicted by Theorem 5.5 while dotted curves are empirical alignments computed on a 100× 200×
300 tensor with signal-rank (3,4,5). If the SNR ω is too small, there is no alignment, meaning that
truncated MLSVD fails to recover P — the signal is masked by the noise. When it exceeds a critical
value (see Theorem 5.5 and Section 5.1.2 for details), a phase transition phenomenon occurs6: the
alignment starts to grow — i.e., truncated MLSVD now partially recovers P — and converges to 1 as
ω→+∞.

Besides, Figure 5.2 also plots the empirical alignments between the singular subspaces of P and
those estimated with the HOOI algorithm (De Lathauwer et al., 2000a) given in Algorithm 5, whose
truncated MLSVD serves as initialization. This yields much better alignments, especially close to the
phase transition. In fact, we show in Theorem 5.11 that the HOOI algorithm converges to a solution
to Problem (5.2) as soon as its initialization sufficiently preserves the underlying signal. This provides
new insight into the computational barrier: initialization is the limiting factor here. Had one prior
information on the solution, one could initialize the HOOI algorithm in the right basin of attraction
and still be able to perfectly (i.e., with alignment 1) reconstruct the signal in the regime 1 ≪∥P∥F ≪
N

d−2
4 , which is computationally hard but statistically easy (see details in Section 5.2.1 and discussion

in Section 5.2.2).
In a nutshell, our contributions can be summarized as follows.

6In fact, we will see in Section 5.1.2 that there is one phase transition for each principal direction of the singular subspaces of
P, resulting in

∑d
ℓ=1 rℓ phase transitions. Their positions corresponds to sudden changes of slope in the solid curves of Figure

5.2.
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• We characterize, in the large N limit, the behavior of the singular values of the unfoldings of
the tensor T — denoted T (ℓ), ℓ ∈ {1, . . . ,d} — when it follows the general spiked tensor model
(5.2) (Theorem 5.1 and Corollary 5.2). This is performed through the analysis of the limiting
spectral distribution of the symmetric matrix T (ℓ)T (ℓ)⊤ using standard tools from the theory of
large random matrices.

• We give a precise condition, depending on aΘ(N
d−2

4 ) threshold on the signal, for the detectabil-
ity of a principal direction of the ℓ-th singular subspace of P from the unfolding T (ℓ). This cor-
responds to the presence of an isolated eigenvalue in the spectrum of T (ℓ)T (ℓ)⊤ with associated
eigenvector aligned with the sought singular subspace. We find similar formulae as Feldman
(2023)7 for the asymptotic position of this isolated eigenvalue, as well as the quality of the align-
ment (Theorem 5.5).

• Relying on our random matrix analysis, we characterize the performance of truncated MLSVD
in the reconstruction of the signal P from the observation T (Section 5.1.2).

• We show that exact reconstruction of P from T is possible in the large N regime with the HOOI
algorithm (De Lathauwer et al., 2000a) as long as ∥P∥F ≫ 1 and it is initialized in the right bassin
of attraction (Theorem 5.11). Without prior information, this depends on the detectability of P

in the truncated MLSVD of T, which is only possible above the Θ(N
d−2

4 ) computational thresh-
old. Moreover, as N → +∞, the number of iterations needed for the convergence of the algo-
rithm converges to 1.

In section 5.1, we present the random matrix analysis of long matrices emerging from the unfold-
ings of tensors following the general spiked tensor model (5.2). These results are presented in the
context of truncated MLSVD and exploited to quantitatively explain its reconstruction performances.
Then, relying on these results, Section 5.2 deals with the numerical estimation of a solution to Problem
(5.1) with the HOOI algorithm. We show its asymptotic optimality and provide insight into the lim-
iting factors for numerical estimation below the computational threshold. We conclude and discuss
our results in Section 5.3. Most proofs are deferred to the appendix.

5.1 Analysis of Truncated MLSVD under the General Spiked Tensor
Model

This section presents a random matrix analysis of the general spiked tensor model introduced in Equa-
tion (5.2) using tools presented in Section 2.1. We give precise results on the spectral behavior of the
unfoldings of the observed tensor T, and specify the achievable performance in the estimation of the
underlying signal P with a truncated MLSVD. Although, as explained in Section 5.0.1, this approach is
only quasi-optimal, it is very easy to implement and represents an excellent “first guess” to initialize a
numerical scheme converging to a solution to Problem (5.1), which is discussed in Section 5.2.

5.1.1 Random Matrix Results on the Model

Under the general spiked tensor model (5.2), we consider an n1× . . .×nd tensor T =P+ 1p
N
N of order

d Ê 3, modeling a low-rank deterministic signal P corrupted by an additive Gaussian noise tensor

7Feldman (2023) studies the spiked model associated with long random matrices within a similar framework as Benaych-
Georges and Nadakuditi (2011). Our approach is different in that it mostly relies on a deterministic equivalent which is intro-
duced in Theorem 5.1.

115



Chapter 5. A Random Matrix Approach to Low-Multilinear-Rank Tensor Approximation

N whose entries are independent N (0,1) random variables8. We denote by (r1, . . . ,rd ) the multilinear
rank ofP and study this model in the asymptotic regime where N →+∞with nℓ =Θ(N ) and rℓ =Θ(1),
ℓ ∈ [d ].

The estimation of P with a truncated MLSVD on T is simply the computation of the dominant
singular subspaces of T. Specifically, Û (ℓ) ∈Rnℓ×rℓ gathers the rℓ dominant left singular vectors of T (ℓ)

— and thus, Û (ℓ)⊤Û (ℓ) = Irℓ . Then, a low-multilinear-rank approximation of T is T̂ = �Ĝ;Û (1), . . . ,Û (d)�
with an r1×. . .×rd core tensor Ĝ=T(Û (1), . . . ,Û (d)). An equivalent expression explicitly showing that T̂
is the projection of T on its dominant singular subspaces is9 T̂ = �T;Û (1)Û (1)⊤, . . . ,Û (d)Û (d)⊤�. Thus,
the quality of this estimation hinges upon the alignments between the singular subspaces of P and
the dominant singular subspaces of T. Namely, denoting û(ℓ)

qℓ , for qℓ ∈ [rℓ], the columns of Û (ℓ) =[
û(ℓ)

1 . . . û(ℓ)
rℓ

]
and given thatP= �H; X (1), . . . , X (d)�, the quantities of interest are ∥X (ℓ)⊤û(ℓ)

qℓ ∥2 since

they represent how much of û(ℓ)
qℓ is in the ℓ-th singular subspace of the signal P.

In order to understand how the singular subspaces of P are perturbed by the addition of noise,
we study the spectral properties of the unfoldings T (ℓ) = P (ℓ) + 1p

N
N (ℓ). In fact, since we are only

interested in the left singular vectors of T (ℓ), it is more convenient to consider the nℓ×nℓ symmetric
matrix T (ℓ)T (ℓ)⊤. Note that this is different from standard spiked matrix models (Benaych-Georges
and Nadakuditi, 2011) because the second dimension of T (ℓ) grows at a faster polynomial rate than the
first one (Θ(N d−1) versusΘ(N )). Hence, it is easy to see that the spectrum of T (ℓ)T (ℓ)⊤ should diverge
as N →+∞: set P= 0n1×...×nd for simplicity and consider the expected mean of the eigenvalues,

1

nℓ
E

[ ∑
λ∈SpT (ℓ)T (ℓ)⊤

λ

]
= 1

nℓ
E

[
Tr

(
1

N
N (ℓ)N (ℓ)⊤

)]
= 1

N

∏
ℓ′ ̸=ℓ

nℓ′ −−−−−→
N→+∞

+∞.

Hence, we need to consider instead a centered-and-scaled version of our random matrix T (ℓ)T (ℓ)⊤ to
properly study the behavior of its spectrum. The quantities µ(ℓ)

N and σN introduced in Theorem 5.1

below are such that the eigenvalues of 1
σN

[
T (ℓ)T (ℓ)⊤−µ(ℓ)

N Inℓ

]
neither diverge nor vanish but stay at a

Θ(1) scale as N →+∞.

Theorem 5.1 (Deterministic equivalent). For ℓ ∈ [d ], define the following quantities,

µ(ℓ)
N = 1

N

∏
ℓ′ ̸=ℓ

nℓ′ , σN = 1

N

√ ∏
ℓ∈[d ]

nℓ.

As N → +∞, if the ratio ∥P∥2
F/σN is bounded, then the resolvent of the centered-and-scaled matrix

1
σN

[
T (ℓ)T (ℓ)⊤−µ(ℓ)

N Inℓ

]
has the following deterministic equivalent (Definition 2.17), for all z̃ ∈C\R,

Q̃ (ℓ)(z̃)
def=

(
1

σN

[
T (ℓ)T (ℓ)⊤−µ(ℓ)

N Inℓ

]
− z̃Inℓ

)−1

←→ Q̄ (ℓ)(z̃)
def=

(
1

σN
P (ℓ)P (ℓ)⊤+ 1

m̃(z̃)
Inℓ

)−1

where m̃(z̃)
def= lim

N→+∞
1

nℓ
TrQ̃ (ℓ)(z̃) does not depend on ℓ ∈ [d ] and satisfies the following equation,

m̃2(z̃)+ z̃m̃(z̃)+1 = 0. (5.4)

Proof. See Appendix 5.A.

8Regarding this Gaussian noise assumption, the universality result of Gurau (2014) shows that, as N →+∞, the distribution
of a random tensor with i.i.d. entries has the same limit than that of a tensor with i.i.d. Gaussian entries. Moreover, recall our
discussion in Section 2.2.3 on the generality of this assumption.

9In the more familiar matrix case (d = 2), the expression �T ;Û (1)Û (1)⊤,Û (2)Û (2)⊤� is equivalent to Û (1)Û (1)⊤T Û (2)Û (2)⊤.
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This theorem is fundamental. It gives a deterministic equivalent Q̄ (ℓ)(z̃) of the resolvent of the

centered-and-scaled matrix 1
σN

[
T (ℓ)T (ℓ)⊤−µ(ℓ)

N Inℓ

]
, which is our entry point into the precise charac-

terization of its spectral behavior, following the approach presented in Section 2.3. First of all, notice

that the “scaling parameters” µ(ℓ)
N and σN are respectively Θ(N d−2) and Θ(N

d−2
2 ), meaning that the

eigenvalues of T (ℓ)T (ℓ)⊤ grow at a speed N d−2 and spread over an interval whose length grows asp
N d−2 and does not depend on the mode ℓ.

Moreover, the relation given in Equation (5.4) characterizes m̃, the Stieltjes transform of the limit-

ing spectral distribution (LSD) of 1
σN

[
T (ℓ)T (ℓ)⊤−µ(ℓ)

N Inℓ

]
. We see that this LSD is the same regardless

of the low-rank perturbation P (ℓ)P (ℓ)⊤, as it is expected that the perturbation should only cause the
presence of a finite number of isolated eigenvalues in the empirical spectral distribution. Notice that,
if P (ℓ) = 0nℓ×

∏
ℓ′ ̸=ℓnℓ′ , we simply have Q̄ (ℓ)(z̃) = m̃(z̃)Inℓ . As a corollary, we recover the limiting spectral

distribution of long random matrices, which was first characterized by Bai and Yin (1988).

Corollary 5.2 (Limiting spectral distribution). As N →+∞, the empirical spectral distribution of the

centered-and-scaled matrix 1
σN

[
T (ℓ)T (ℓ)⊤−µ(ℓ)

N Inℓ

]
converges weakly almost surely to µSC, the semicir-

cle distribution on [−2,2],

dµSC(x)
def= 1

2π

√[
4−x2

]+dx.

Proof. Following Equation (5.4), m̃(z̃) = 1
2

[
−z ±

p
z2 −4

]
where the ± sign is chosen so that m̃ satisfies

the properties of a Stieltjes transform, in particular ℑ[z̃]ℑ[m̃(z̃)] > 0 for all z̃ ∈ C \R. Then, the result
follows from the Stieltjes transform inversion formula introduced in Proposition 2.11.

This result states that the limiting spectral distribution of 1
σN

[
T (ℓ)T (ℓ)⊤−µ(ℓ)

N Inℓ

]
is, in fact, the

very-well-known semicircle distribution, first observed by Wigner (1955, 1958) in the study of certain
special classes of random matrices arising in quantum mechanics. It indicates that, as N →+∞, the
density of eigenvalues of T (ℓ)T (ℓ)⊤ is a stretched semicircle on [µ(ℓ)

N ±2σN ]. This phenomenon is il-

lustrated in the first row of Figure 5.3, where the empirical spectral distribution (ESD) of T (ℓ)T (ℓ)⊤ is
represented with the corresponding stretched semicircle for every mode ℓ of an order-3 tensor of size
300×500×700 following the general spiked tensor model (5.2).

Remark 5.3 (From Marčenko-Pastur to Wigner). Given a random matrix X ∈Rp1×p2 with i.i.d. N (0, 1
p2

)

entries, it is well known that the empirical spectral distribution of X X ⊤ converges weakly to the
Marčenko-Pastur distribution as p1, p2 →+∞ with p1/p2 = c > 0 (Theorem 2.29). On the other hand,
the standard semicircle distribution µSC is known to be the limiting spectral distribution of symmetric
p ×p random matrices with i.i.d. (up to symmetry) N (0, 1

p ) entries (Theorem 2.25). Here, Corollary

5.2 shows that if p2 grows at a faster polynomial rate than p1, the matrix X X ⊤ behaves asymptotically
(up to a deterministic rescaling and shift) like a Wigner matrix, even if its entries are not independent.
Experimentally, we observe that, if n2 and n3 are chosen small compared to n1 (in contradiction with
our assumption n1,n2,n3 =Θ(N )), e.g., (n1,n2,n3) = (1000,40,40), then the empirical spectral distri-
bution of T (1)T (1)⊤ is better modeled by a Marčenko-Pastur distribution than by a Wigner semicircle.

Remark 5.4 (Confinement of the spectrum). The weak convergence of the empirical spectral distribu-
tion to µSC stated in Corollary 5.2 could allow for a negligible amount of eigenvalues to stay outside
the support of the limiting spectral distribution. In fact, in Appendix 5.A.5, we show an even more
precise statement on the global behavior of the eigenvalues of 1

N N (ℓ)N (ℓ)⊤ (the model without sig-

nal): for all ε > 0, there exists an integer N0 such that Dist( 1
σN

[λ−µ(ℓ)
N ], [−2,2]) É ε almost surely for

all λ ∈ Sp 1
N N (ℓ)N (ℓ)⊤ as soon as N Ê N0. This means that no eigenvalue of 1

σN

[
1
N N (ℓ)N (ℓ)⊤−µ(ℓ)

N Inℓ

]
stays outside the support of the semicircle distribution [−2,2] almost surely as N →+∞.
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Figure 5.3: Top: empirical spectral distribution (ESD) of T (ℓ)T (ℓ)⊤. The orange curve is the density
of the stretched semicircle on [µ(ℓ)

N ± 2σN ] (Corollary 5.2). Green dashed lines represent asymptotic

positions of spikes µ(ℓ)
N +σN ξ̃

(ℓ)
qℓ (Theorem 5.5). Bottom: Observed alignments between the dominant

eigenvectors of T (ℓ)T (ℓ)⊤ and P (ℓ)P (ℓ)⊤ (purple bars) with their predicted asymptotic values [ζ(ℓ)
qℓ ]+

(red curve, Theorem 5.5). Experimental setting: d = 3, (n1,n2,n3) = (300,500,700), N = n1 +n2 +n3,
(r1,r2,r3) = (3,4,5) and ∥P∥2

F/σN = 15.

The empirical spectral distributions of Figure 5.3 also show isolated eigenvalues on the right side
of each semicircle. They are caused by the low-rank perturbation P which, in this setting, has multi-
linear-rank (3,4,5). The estimate of P given by a truncated MLSVD on T has its singular subspaces
spanned by the dominant eigenvectors of T (ℓ)T (ℓ)⊤, i.e., precisely those associated with these isolated
eigenvalues. Hence, a precise characterization of the behavior of these spikes is needed to plainly un-
derstand the recovery performance of this estimate. As explained in Section 2.1, this can be achieved
with the deterministic equivalent given in Theorem 5.1.

Theorem 5.5 (Spike behavior). For ℓ ∈ [d ] and qℓ ∈ [rℓ], define the following quantities10,

ρ(ℓ)
qℓ =

s2
qℓ (P (ℓ))

σN
, ξ̃(ℓ)

qℓ = ρ(ℓ)
qℓ +

1

ρ(ℓ)
qℓ

and ζ(ℓ)
qℓ = 1− 1[

ρ(ℓ)
qℓ

]2 .

As N →+∞, if the ratio ∥P∥2
F/σN is bounded and ρ(ℓ)

qℓ > 1, then

1

σN

[
s2

qℓ (T (ℓ))−µ(ℓ)
N

]
a.s.−−→ ξ̃(ℓ)

qℓ and
∥∥∥X (ℓ)⊤û(ℓ)

qℓ

∥∥∥2 a.s.−−→ ζ(ℓ)
qℓ

where û(ℓ)
qℓ is the qℓ-th dominant left singular vector of T (ℓ).

Proof. See Appendix 5.B.

The first quantity defined in this theorem, ρ(ℓ)
qℓ , should be understood as a signal-to-noise ra-

tio (SNR). Indeed, the squared qℓ-th singular value of P (ℓ) (i.e., the qℓ-th eigenvalue of P (ℓ)P (ℓ)⊤),

10We recall that the notation si (A) denotes the i -th singular value of A in non-increasing order.
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s2
qℓ (P (ℓ)), measures the “strength” of the signal in its qℓ-th principal direction, whereas σN measures

the spread of the noise, as seen in Theorem 5.1. The two quantities ξ̃(ℓ)
qℓ and ζ(ℓ)

qℓ depend only on
the value of this SNR and indicate respectively the position of an isolated eigenvalue in the sprec-
trum of T (ℓ)T (ℓ)⊤ and the alignment of the corresponding eigenvector with the sought signal. In fact,
we observe a phase transition phenomenon: if the SNR is large enough, i.e., if ρ(ℓ)

qℓ > 1, an eigen-

value of T (ℓ)T (ℓ)⊤ isolates itself from the semicircle11 around µ(ℓ)
N +σN ξ̃

(ℓ)
qℓ . Moreover, recalling that

P = �H; X (1), . . . , X (d)�, the eigenvector associated with this isolated eigenvalue is aligned with the
subspace spanned by X (ℓ), which is the ℓ-th singular subspace of P. The quality of this alignment is
given by 0 < ζ(ℓ)

qℓ É 1.

Most importantly, this result reveals the non-trivial regime for the estimation of P with a truncated

MLSVD. Since σN = Θ(N
d−2

2 ), it shows that ∥P∥2
F = ∑rℓ

qℓ=1 s2
qℓ (P (ℓ)) must also be of the same order.

Indeed, if ∥P∥2
F ≪ N

d−2
2 , then ρ(ℓ)

qℓ → 0, the SNR is too small and no signal can be recovered, whereas if

∥P∥2
F ≫ N

d−2
2 , then ρ(ℓ)

qℓ →+∞, the SNR is very high and recovery of P is easy. It is precisely between

these two regimes, i.e., ∥P∥F =Θ(N
d−2

4 ), that the recovery is non-trivial. Note that this observation is
in line with the results of Ben Arous et al. (2023) and Zhang and Xia (2018). In this non-trivial regime,
the quantities ζ(ℓ)

qℓ given in Theorem 5.5 precisely quantify how well the dominant eigenvectors of

T (ℓ)T (ℓ)⊤ are aligned with the sought signal, i.e., the singular subspaces of P. In section 5.1.2 below,
this result is used to study the reconstruction performance of truncated MLSVD.

Remark 5.6 (Link with the spiked Wigner model). The expressions of ξ̃(ℓ)
qℓ and ζ(ℓ)

qℓ given in Theorem
5.5 are similar to those given in Corollary 2.28 for the spiked Wigner model. Indeed, given a symmetric
p×p random matrix W with i.i.d. (up to symmetry) N (0, 1

p ) entries, the spectrum of [ρx x⊤+W ] with

∥x∥ = 1 follows a semicircle distribution as p →+∞ with an isolated eigenvalue at ρ+ 1
ρ if, and only

if, ρ > 1 (Féral and Péché, 2007; Edwards and Jones, 1976; Füredi and Komlós, 1981). Moreover, the
corresponding eigenvector u is such that 〈x ,u〉2 → 1− 1

ρ2 almost surely as p →+∞ (Benaych-Georges

and Nadakuditi, 2011). As discussed in Remark 5.3, up to a deterministic rescaling and shift, T (ℓ)T (ℓ)⊤

asymptotically behaves like a spiked Wigner matrix.

Theorem 5.5 is illustrated in Figure 5.3. In the first row, asymptotic positions of isolated eigenval-
ues µ(ℓ)

N +σN ξ̃
(ℓ)
qℓ are represented by the green dashed lines. In our experiment, P has multilinear rank

(3,4,5). Hence 3, 4 and 5 isolated eigenvalues are expected in the spectrum of T (ℓ)T (ℓ)⊤ for ℓ = 1, 2
and 3 respectively. This is indeed the case for ℓ = 1 and ℓ = 2 but not ℓ = 3 where there are only 4
spike eigenvalues. In fact, s5(P (3)) is not “energetic enough” to extricate itself from the bulk of eigen-
values, i.e, the SNR ρ(3)

5 is below the phase transition threshold. Hence the fifth dominant left singular
vector of T (3) is not informative as it is not aligned with the third singular subspace of P, spanned
by X (3). The second row of Figure 5.3 depicts the alignments of the spiked eigenvectors û(ℓ)

qℓ with the
corresponding singular subspaces of P as well as the asymptotic alignment given by Theorem 5.5 as
a function of the position of the associated eigenvalue. It appears that the higher is the SNR ρ(ℓ)

qℓ , the
farther is the isolated eigenvalue from the bulk and the more is the corresponding eigenvector aligned
with the span of X (ℓ). This assertion can be intuitively understood in terms of “energy” s2

qℓ (P (ℓ)) of
a given principal direction. More energy pushes the eigenvalue farther from the bulk and aligns the
corresponding eigenvector with the corresponding singular subspace of P.

11Indeed, note that ρ(ℓ)
qℓ

> 1 =⇒ ξ̃(ℓ)
qℓ

> 2.
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5.1.2 Reconstruction Performance of Truncated MLSVD

Our random matrix results allow to accurately study the reconstruction performance of truncated
MLSVD. Given a data tensor T following the general spiked tensor model (5.2), we consider its low-
rank approximation T̂ = �Ĝ;Û (1), . . . ,Û (d)� where Û (ℓ) is the nℓ× rℓ matrix whose columns are the rℓ
dominant singular vectors of T and Ĝ=T(Û (1), . . . ,Û (d)). T̂ is the projection of T on its dominant sin-
gular subspaces, hence the name truncated MLSVD as it generalizes the truncated SVD of matrices.
Given Model (5.2), the underlying signal estimated by T̂ is P = �H; X (1), . . . , X (d)�. The reconstruc-
tion performance of T̂ hence depends on how well the subspace12 spanned by Û (ℓ) estimates the one
spanned by X (ℓ).

Metrics between singular subspaces are often expressed in terms of principal angles (Björck and
Golub, 1973; Stewart and Sun, 1990, II.4), which generalize the concept of angle between lines. Given
two subspaces (here, Span X (ℓ) and SpanÛ (ℓ)), one can define a set of mutual angles which are invari-
ant under isometric transformation.

Definition 5.7 (Principal angles). The principal angles θ(ℓ)
qℓ ∈ [0, π2 ] between the subspaces spanned by

X (ℓ) and Û (ℓ) are recursively defined for qℓ = 1, . . . ,rℓ by

cosθ(ℓ)
qℓ = 〈

xqℓ ,uqℓ

〉
with (xqℓ ,uqℓ ) ∈ argmax

(x ,u)∈Span X (ℓ)×SpanÛ (ℓ)

x⊤xq′
ℓ
=0, u⊤uq′

ℓ
=0, 1Éq ′

ℓ
<qℓ

〈x ,u〉.

Moreover, we have the following useful property.

Proposition 5.8 (Björck and Golub, 1973). The qℓ-th singular value of X (ℓ)⊤Û (ℓ) in non-increasing
order equals the cosine of the qℓ-th principal angle,

sqℓ (X (ℓ)⊤Û (ℓ)) = cosθ(ℓ)
qℓ , ℓ ∈ [d ], qℓ ∈ [rℓ].

In fact, information about the alignment between the subspaces induced by X (ℓ) and Û (ℓ) are
contained entirely in the rℓ× rℓ matrix X (ℓ)⊤Û (ℓ). Following Definition 5.7, we know from Theorem

5.5 that, as N → +∞, cos2θ(ℓ)
qℓ →

[
ζ(ℓ)

qℓ

]+
almost surely13, since ρ(ℓ)

qℓ > 1 ⇐⇒ ζ(ℓ)
qℓ > 0. Hence, using

Proposition 5.8,
1

rℓ

∥∥∥X (ℓ)⊤Û (ℓ)
∥∥∥2

F
= 1

rℓ

rℓ∑
qℓ=1

cos2θ(ℓ)
qℓ

a.s.−−−−−→
N→+∞

1

rℓ

rℓ∑
qℓ=1

[
ζ(ℓ)

qℓ

]+
. (5.5)

Therefore, the quantity 1
rℓ
∥X (ℓ)⊤Û (ℓ)∥2

F ∈ [0,1] appears as a relevant measure of alignment between

the singular subspaces of P and T̂ and does not depend on the chosen orthonormal bases X (ℓ) and
Û (ℓ). More details on metrics between subspaces can be found in Stewart and Sun (1990, II.4).

In Figure 5.2 are represented the alignments between the singular subspaces of T̂ and P=p
ωP◦

with ∥P◦∥2 = σN as a function of the signal-to-noise ratio ω. The fact that ∥P◦∥2 = σN ensures that
the estimation problem is non-trivial (neither too easy nor too hard) as ρ(ℓ)

qℓ = Θ(1). Plain curves are
the alignments given by Theorem 5.5 as N →+∞ (right-hand side of Equation (5.5)) whereas dotted
curves are simulation results at finite N (left-hand side of Equation (5.5)). In this setting, P◦ has mul-
tilinear rank (3,4,5). Hence, its “energy” ∥P◦∥2 is spread among 3, 4 and 5 directions along modes
1, 2 and 3 respectively. Each break in the plain curves correspond to a value of ω such that ρ(ℓ)

qℓ = 1,

12The object of importance is indeed the subspace and not the matrix Û (ℓ) since any other matrix Û (ℓ)O(ℓ), with O(ℓ) ∈Orℓ (R),
would span the same subspace and therefore give the same approximation.

13Indeed, since ζ(ℓ)
1 Ê . . . Ê ζ(ℓ)

rℓ
, observe that, in Definition 5.7, 〈xqℓ ,uqℓ 〉2 is asymptotically bounded by

[
ζ(ℓ)

qℓ

]+
.
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that is, ω = σN /s2
qℓ (P (ℓ)

◦ ). In other words, there are rℓ phase transitions along mode ℓ whose posi-

tions depend on the singular values of P (ℓ)
◦ . If ω is too small (here, ω≲ 2), truncated MLSVD fails to

recover any direction of the singular subspaces of P◦. As ω passes the first phase transition (here, at
ω=σN /s2

1(P (1)
◦ ) ≈ 2), a first principal direction is partially reconstructed. Then, more and more phase

transitions occur, corresponding to more and more principal directions being recovered as ω grows.
Simultaneously, the reconstruction of previous directions keeps improving. Eventually, as ω is large,
subspace alignments approach 1, indicating that truncated MLSVD accurately recovers the singular
subspaces of P◦.

The reader has not missed the dashed lines in Figure 5.2 showing much better subspace align-
ments than truncated MLSVD. They result from the numerical estimation of the best rank-(3,4,5) ap-
proximation of T with the HOOI algorithm, which is discussed in the next section.

Remark 5.9 (Reconstruction of H). Guarantees on the recovery of the core tensor H can be deduced
from Theorem 5.5 as well. Without loss of generality, we can assume that X (ℓ)⊤Û (ℓ) is, up to an almost-
surely vanishing additive term, a diagonal matrix with entries ζ(ℓ)

1 , . . . ,ζ(ℓ)
rℓ (otherwise replace Û (ℓ) by

Û (ℓ)O(ℓ) for a well-chosen orthogonal matrix O(ℓ)). Then, Ĝ = T(Û (1), . . . ,Û (d)) is the corresponding
estimator of H and

Ĝ= Ĥ+ 1p
N
N(Û (1), . . . ,Û (d)) with Ĥ=

�
H;Û (1)⊤X (1), . . . ,Û (d)⊤X (d)

�
.

We will see in Lemma 5.10 below that ∥ 1p
N
N(Û (1), . . . ,Û (d))∥F =O (1) almost surely as N →+∞. On the

other hand, we know that ∥H∥F = ∥P∥F =Θ(N
d−2

4 ) ≫ O (1) as soon as d Ê 3 and the entries of Ĥ are
proportional to those of H:

Ĥq1,...,qd =Hq1,...,qd

d∏
ℓ=1

ζ(ℓ)
qℓ +ϵq1,...,qd , ℓ ∈ [d ], qℓ ∈ [rℓ],

up to an almost-surely vanishing additive term ϵq1,...,qd as N →+∞.

Moreover, regarding the reconstruction of T, we know from De Lathauwer et al. (2000b, Property
10) that ∥∥∥T− T̂

∥∥∥2

F
É

d∑
ℓ=1

nℓ∑
iℓ=rℓ+1

s2
iℓ

(T (ℓ)) =
d∑
ℓ=1

(
∥T∥2

F −
rℓ∑

qℓ=1
s2

qℓ (T (ℓ))

)

and the asymptotic behavior of s2
qℓ (T (ℓ)) is given by Theorem 5.5.

5.2 Numerical Estimation of the Best Low-Multilinear-Rank
Approximation

In search of an efficient estimator of the planted signal P, one naturally considers the best low-
multilinear-rank approximation of T, that is, a solution to Problem (5.1). As explained in the intro-
duction, this is NP-hard in general but numerical schemes can compute it in polynomial time above
the computational threshold (Montanari and Richard, 2014; Zhang and Xia, 2018). In this section, we
examine the most standard of these numerical schemes, namely the Higher Order Orthogonal Itera-
tion (HOOI) algorithm (De Lathauwer et al., 2000a; Kroonenberg and de Leeuw, 1980; Kapteyn et al.,
1986), and discuss the numerical difficulties faced in the computation of a solution to Problem (5.1).
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5.2.1 Higher-Order Orthogonal Iteration

Following De Lathauwer et al. (2000a, Theorem 4.2), the maximum likelihood estimation formulated
in Problem (5.1) is equivalent to(

U (1)
⋆ , . . . ,U (d)

⋆

)
∈ argmax

U (ℓ)∈Vrℓ
(Rnℓ ), ℓ∈[d ]

1

2

∥∥∥T(U (1), . . . ,U (d))
∥∥∥2

F
(5.6)

where Vrℓ (Rnℓ ) = {U (ℓ) ∈ Rnℓ×rℓ | U (ℓ)⊤U (ℓ) = Irℓ } is the set of rℓ × nℓ matrices with orthonormal
columns, known as the Stiefel manifold (Chikuse, 2003; Absil et al., 2009). Then, since the Frobenius
norm of T(U (1), . . . ,U (d)) is equal to the Frobenius norm of any of its unfoldings,∥∥∥T(U (1), . . . ,U (d))

∥∥∥
F
=

∥∥∥∥∥U (ℓ)⊤T (ℓ)⊠
ℓ′ ̸=ℓ

U (ℓ′)

∥∥∥∥∥
F

, ℓ ∈ [d ].

And we see from Problem (5.6) that U (ℓ)
⋆ is the matrix gathering the rℓ dominant left singular vectors

of T (ℓ)⊠ℓ′ ̸=ℓU (ℓ′)
⋆ . This is precisely what motivates the HOOI algorithm presented in Algorithm 5. It

performs fixed-point iterations to compute a solution U (1)
⋆ , . . . ,U (d)

⋆ satisfying the previous property14.

Algorithm 5: Higher-Order Orthogonal Iteration (De Lathauwer et al., 2000a)

for ℓ= 1, . . . ,d do U (ℓ)
0 ← rℓ dominant left singular vectors of T (ℓ)

repeat

for ℓ= 1, . . . ,d do U (ℓ)
t+1 ← rℓ dominant left singular vectors of T (ℓ)⊠ℓ′ ̸=ℓU (ℓ′)

t
until convergence at t = T

GHOOI ←T(U (1)
T , . . . ,U (d)

T )

The HOOI algorithm is initialized with U (1)
0 , . . . ,U (d)

0 , the truncated MLSVD15 ofT. Given the results
of Section 5.1, this is indeed a very good and easily computable first guess. Then, fixed-point iterations
are repeated in order to find a solution U (1)

⋆ , . . . ,U (d)
⋆ such that U (ℓ)

⋆ spans the left rℓ-dimensional dom-

inant singular subspace of T (ℓ)⊠ℓ′ ̸=ℓU (ℓ′)
⋆ for all ℓ ∈ [d ], which corresponds to a solution to Problem

(5.6). In practice, the stopping criterion can be chosen as a negligible change in the norm of the esti-
mated core tensor, ∥T(U (1)

t , . . . ,U (d)
t )∥F.

Xu (2018) showed that the convergence of this algorithm towards a local minimum of Problem
(5.6) is guaranteed as long as its initialization is sufficiently close to this local minimum. In light of
our previous results, we can provide further insight into this “sufficiently close” property. Indeed,
in Theorem 5.11 below, we show that an initialization with non-zero alignment with the signal P is
sufficient to ensure that the HOOI algorithm perfectly reconstructs it after a single iteration.

Before introducing Theorem 5.11, we formulate an important preliminary result which essentially
states that, given A(ℓ) ∈Vrℓ (Rnℓ ), ℓ ∈ [d ], the quantity 1p

N
∥N(A(1), . . . , A(d))∥F is almost surely bounded

as N →+∞.

Lemma 5.10. With probability at least 1−δ,

sup
A(ℓ)∈Vrℓ

(Rnℓ ), ℓ∈[d ]

∥∥∥N(A(1), . . . , A(d))
∥∥∥2

F
É 16

[(
d∑
ℓ=1

rℓ

(
nℓ−

rℓ+1

2

))
log

C d

log 3
2

+ log

(
1

δ
max

(
1,e

1
2

∏d
ℓ=1 rℓ−1

))]

where C > 0 is a universal constant.
14In fact, this property corresponds to first-order optimality conditions of Problem (5.6), with the squared singular values as

Lagrange multipliers.
15Consistently with the notations of Section 5.1, this is Û (1), . . . ,Û (d).

122



5.2. Numerical Estimation of the Best Low-Multilinear-Rank Approximation

Proof. See Appendix 5.C.

This result is crucial to handle the behavior of the noise in our analysis of Algorithm 5 (Appendix
5.D), which leads to the following result on the alignment between the singular subspaces of the sig-
nal P (spanned by X (ℓ)) and those estimated from the observation T after the first iteration of HOOI
(spanned by U (ℓ)

1 ).

Theorem 5.11 (Asymptotic optimality of HOOI). As N →+∞, if ∥P∥F ≫ 1 and

min
ℓ∈[d ], qℓ∈[rℓ]

∥∥∥P(U (1)
0 , . . . , x (ℓ)

qℓ , . . . ,U (d)
0 )

∥∥∥
F

def= LN ≫∥P∥1/2
F

where x (ℓ)
qℓ is the qℓ-th column of X (ℓ), then,

1

rℓ

∥∥∥X (ℓ)⊤U (ℓ)
1

∥∥∥2

F
= 1+O

(
∥P∥F

L2
N

)
almost surely.

Proof. See Appendix 5.D.

It is important to carefully understand the assumptions of Theorem 5.11. Firstly, it assumes that

∥P∥F ≫ 1 as N → +∞, that is, the signal is not necessarily in the non-trivial regime Θ(N
d−2

4 ) but
can be smaller or bigger as long as ∥P∥F → +∞, regardless its speed. Then, the second assumption
∥P(U (1)

0 , . . . , x (ℓ)
qℓ , . . . ,U (d)

0 )∥F ≫ ∥P∥1/2
F means that each principal directions of the ℓ-th singular sub-

space are sufficiently preserved after contraction on {U (ℓ′)
0 }ℓ′ ̸=ℓ. When these assumptions are verified,

Theorem 5.11 states that the matrices U (1)
1 , . . . ,U (d)

1 computed after the first iteration of HOOI perfectly
reconstruct the singular subspaces of the sought signal P as the dimensions of the tensor, n1, . . . ,nd ,
grow large. More formally, as N → +∞, the alignment 1

rℓ
∥X (ℓ)⊤U (ℓ)

1 ∥2
F approaches 1 almost surely.

Furthermore, the speed of this convergence behaves like ∥P∥F/L2
N .

Theorem 5.11 does not assume a particular choice of initialization U (1)
0 , . . . ,U (d)

0 and gives a suf-
ficient condition for it to ensure the convergence of the algorithm. Nevertheless, as it is presented
in Algorithm 5, truncated MLSVD is a standard choice of initialization. In this case, the assumption
LN =Θ(∥P∥) is verified as soon as enough principal directions are recovered. According to Theorem

5.5, this is only possible if ∥P∥F Êp
σN =Θ(N

d−2
4 ) since a necessary condition is ρ(ℓ)

1 > 1 for all ℓ ∈ [d ],

while a sufficient condition is ρ(ℓ)
qℓ > 1 for all ℓ ∈ [d ] and qℓ ∈ [d ]. In other words, convergence at speed

∥P∥−1
F as assured above a critical signal-to-noise ratio lying between the first and the last phase tran-

sition of each mode, and which depends on the particular structure of the core tensor H. Yet, in most
cases, this happens quite early, right after the first phase transitions, see for example Figure 5.2.

We emphasize the fact that the assumption of Theorem 5.11 can already be verified as soon as
minℓρ

(ℓ)
1 > 1. That is, there is no need for all the principal directions to be reconstructed at initial-

ization. In fact, it could very well be that maxℓρ
(ℓ)
2 < 1. If the singular subspaces of P are sufficiently

preserved with the initialization U (1)
0 , . . . ,U (d)

0 — i.e., if LN ≫∥P∥1/2 —, then the other principal direc-
tions still emerge after the first iteration.

In the simpler rank-1 case, these technical considerations vanish and we recover the result of Feld-
man and Donoho (2023, Theorem 4.2): if P= βN

⊗
ℓ∈[d ] x (ℓ) then a necessary and sufficient condition

for LN = Θ(∥P∥F) is simply β2
N > σN . Indeed, ρ(ℓ)

1 = β2
N /σN for all ℓ ∈ [d ]. Moreover, when this as-

sumption if verified, Theorem 5.11 ensures the asymptotic exact reconstruction of x (1), . . . , x (d) in a
single iteration with a ∥P∥−1

F =β−1
N speed of convergence.
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Figure 5.4: Alignments between singular subspaces of the observation T =P+ 1p
N
N and of the signal

P, with ∥P∥2
F/σN = 10, at initialization of Algorithm 5 (i.e., truncated MLSVD) and after the first iter-

ation, as a function of the size of the tensor given by the parameter N . Left: 1
rℓ
∥X (ℓ)⊤U (ℓ)

0 ∥2
F. Middle:

1
rℓ
∥X (ℓ)⊤U (ℓ)

1 ∥2
F. Right: (1− 1

rℓ
∥X (ℓ)⊤U (ℓ)

1 ∥2
F)×pσN . Experimental setting: d = 3, ( n1

N , n2
N , n3

N ) = ( 1
6 , 2

6 , 3
6 ),

N = n1 +n2 +n3 and (r1,r2,r3) = (3,4,5).

Remark 5.12 (Practical implications). In practice, one should still run several iterations of Algorithm
5 until a certain stopping criterion is verified as this effectively improves the final estimate and con-
verges to a solution to the maximum likelihood estimation (5.1) (Xu, 2018). Theorem 5.11 states that
the reconstruction performance of HOOI after the first iteration increases as we consider larger ten-
sors, until it reaches perfect recovery in the large N limit. In other words, the number of iterations re-
quired to achieve a specific level of accuracy in maximum likelihood estimation tends to 1 as N →+∞.

Theorem 5.11 is illustrated in Figure 5.4. As a function of N — the size of the tensor — we represent
the subspace alignments observed at initialization and after the first iteration for a fixed signal-to-
noise ratio ∥P∥2

F/σN = 10. The left panel compares the observed alignments achieved with truncated
MLSVD (initialization of Algorithm 5) with the asymptotic alignments predicted by Theorem 5.5. As
N grows, the observed alignments remain around their asymptotic values, with only a decrease in
variance. The middle panel presents the alignments after the first iteration. Here, as N increases, we
observe an increase in the values of the alignments, which approach 1, consistently with Theorem
5.11. This is specified in the right panel where the value (1− 1

rℓ
∥X (ℓ)⊤U (ℓ)

1 ∥2
F)×p

σN is plotted. Ac-

cording to Theorem 5.11, this value should be O (1) since LN =Θ(∥P∥F) =Θ(
p
σN ) here. The observed

behavior confirms the ∥P∥−1
F speed of convergence asserted in Theorem 5.11.

5.2.2 Discussion on Signal Reconstructibility

Our results on truncated MLSVD (Section 5.1) and HOOI (Section 5.2.1) bring insight into the compu-
tational-to-statistical gap observed in the low-multilinear-rank approximation problem. Truncated

MLSVD can only work efficiently if ∥P∥F is at least Θ(N
d−2

4 ) and its reconstruction performance has
been discussed in Section 5.1.2. However, Theorem 5.11 suggests that it is possible to perfectly recon-
struct the signal P from the observation T as long as ∥P∥F ≫ 1 and HOOI is accurately initialized. Yet,
it is known that, without prior information on P, maximum likelihood estimation (5.1) is NP-hard be-

low theΘ(N
d−2

4 ) computational threshold (Zhang and Xia, 2018), which lies precisely in the non-trivial
regime of truncated MLSVD.

In fact, what can be understood from Theorem 5.11 is that it suffices to have an initialization U (ℓ)
0 ,

ℓ ∈ [d ], slightly aligned with the underlying signal P to be in the right basin of attraction and allow
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the convergence of Algorithm 5 towards a solution to Problem (5.1). This complements the results
of Xu (2018) on the conditions of convergence of HOOI. Furthermore, a solution to Problem (5.1) is
aligned with P as soon as ∥P∥F = Θ(1) (Ben Arous et al., 2019; Jagannath et al., 2020; Zhang and Xia,
2018). Hence, as the HOOI algorithm is meant to compute a maximum likelihood estimator, with the
assumption ∥P∥F ≫ 1 made in Theorem 5.11, it is expected that these iterations allow to perfectly
recover the signal asymptotically. Maximum likelihood estimation is indeed (theoretically) trivial if
∥P∥F →+∞. It is more surprising however that this already happens at the first iteration.

As said previously, the choice of initialization U (ℓ)
0 , ℓ ∈ [d ], does not matter in Theorem 5.11. In fact,

without prior information, a truncated MLSVD is the best choice as it allows to partially reconstruct

the signal at theΘ(N
d−2

4 ) computational threshold. Nevertheless, had one prior information allowing

such a reconstruction in the regime 1 ≪P≪ N
d−2

4 — where truncated MLSVD would not be fruitful
—, HOOI would still be able to perfectly reconstruct the signal P given this initialization.

Hence, HOOI initialized with a truncated MLSVD, as it is presented in Algorithm 5, allows to nu-
merically compute a maximum likelihood estimator (solution to Problem (5.1)) but only above the
phase transition of truncated MLSVD. Indeed, its initialization plays a determining role: it must place
U (ℓ)

0 , ℓ ∈ [d ], in the right basin of attraction, which, without prior information, is only possible above

theΘ(N
d−2

4 ) computational threshold.
Finally, we highlight the fact that these results concern the large N limit. In practice, it makes

no sense to talk about Θ(1) or Θ(N
d−2

4 ) regimes at finite N . Figure 5.2 also depicts the subspace
alignments achieved with the maximum likelihood estimator computed with Algorithm 5 on T =p
ωP◦ + 1p

N
N. Although ∥P◦∥F = p

σN = Θ(N
d−2

4 ), HOOI does not achieve perfect recovery of P as

one might expect from Theorem 5.11 (even if several iterations were performed here). In fact, at fi-
nite N , perfect recovery is not feasible. But, as N grows, the dashed line would approach 1 above the
(computational) phase transition determined by the truncated MLSVD and stay close to 0 below.

5.3 Concluding Remarks

The analysis presented in this work yields theoretical and practical insights into the estimation of a
low-rank signal from an observation T =P+ 1p

N
N following the most general spiked tensor model.

While Zhang and Xia (2018) gave a general overview of the different regimes governing the estima-
tion of P with a low-multilinear-rank approximation of T — thereby confirming the existence of a
computational-to-statistical gap —, our results shed light on the non-trivial aspects at stake around

the Θ(N
d−2

4 ) computational threshold. This is of particular importance as practical applications lie in
this non-trivial regime where signal and noise have the same magnitude and must be decoupled. In
particular, truncated MLSVD and HOOI are very standard and efficient algorithms to compute low-
multilinear-rank approximations. Performances of the latter rely strongly on the quality of its initial-
ization, which is usually performed with a truncated MLSVD in the absence of prior information. This
approach allows the detection of the underlying signal as early as the computational threshold con-

trary to other methods such as AMP or tensor power iteration, which are efficient above a Θ(N
d−1

2 )
algorithmic threshold (Montanari and Richard, 2014).

Relying on standard tools and methods from the theory of large random matrices, we have char-
acterized the spectral behavior of the unfoldings of T in the large N limit. Specifically, our first main
result shows that, when properly centered and scaled, the eigenvalues of T (ℓ)T (ℓ)⊤ asymptotically
follow a semicircle distribution. The rescaling exhibits their mean µ(ℓ)

N = Θ(N d−2) and a quantity

σN = Θ(N
d−2

2 ) governing their spread. From our denoising perspective, σN indicates the strength of
the noise. Indeed, while the global behavior of the eigenvalues is controlled by the noise, the addition
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of a low-rank signal causes the presence of a finite number of eigenvalues outside the limiting semi-
circle distribution with corresponding eigenvectors aligned with the singular subspaces of the sought
signal P. Yet, the existence of these outlier eigenvalues hinges on the values of the signal-to-noise
ratios ρ(ℓ)

qℓ = s2
qℓ (P (ℓ))/σN , manifesting a BBP phase transition phenomenon. When they exist, the po-

sitions of these isolated eigenvalues and the quality of the corresponding alignments are completely
determined by ρ(ℓ)

qℓ . These results justify the use of a truncated MLSVD to estimate P from the obser-
vation T and allow the precise characterization of the achievable reconstruction performances in the
non-trivial regime, i.e., close to the computational threshold. In particular, we have seen that each
singular value of P (ℓ) determines the position of a phase transition corresponding to the detectability
of the corresponding principal direction.

Although truncated MLSVD does not yield the best low-multilinear-rank approximation — i.e., a
maximum likelihood solution —, it serves as an excellent initialization to the HOOI algorithm, which
converges to such an estimator if it is initialized sufficiently close to it (Xu, 2018). In fact, we precise
this last assertion by showing that, as long as the initialization preserves the singular subspaces of P in
a sense precised in Theorem 5.11, HOOI converges to a maximum likelihood solution in a number of
iterations which tends to 1 as N →+∞. Hence, when it is initialized with a truncated MLSVD, it shares
the same phase transition, whose position depends on the singular values s(ℓ)

qℓ (P (ℓ)) of the unfoldings
of P. Yet, given prior information, HOOI can still reconstruct the maximum likelihood solution below

the computational threshold ∥P∥F =Θ(N
d−2

4 ), where its success depends entirely on the quality of its
initialization.

This work gives a comprehensive understanding of the low-multilinear-rank approximation prob-
lem near the computational threshold, which has both practical and theoretical implications. Besides,
from a theoretical perspective, the behavior of the maximum likelihood estimator is still unclear near
the statistical threshold — that is, in the regime where ∥P∥F = Θ(1). Several works have studied the
rank-1 symmetric case (Ben Arous et al., 2019; Jagannath et al., 2020) and the approach developed by
Seddik et al. (2022) in their analysis of the rank-1 asymmetric case may be an attractive direction to
consider. Relying solely on classical tools from random matrix theory, they bring the study of the best
rank-1 tensor approximation down to that of a structured matrix defined from the contractions of the
data tensor on its dominant singular vectors. Extending this procedure to our general spiked tensor
model (5.2) presents no conceptual difficulty, despite being computationally cumbersome due to the
multiple dimensions of the singular subspaces. It is an interesting line of investigation to refine our
understanding of the statistical limits to low-rank tensor estimation from spiked models.
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5.A Proof of Theorem 5.1

The resolvent of T (ℓ)T (ℓ)⊤ is defined for all z ∈C\ SpT (ℓ)T (ℓ)⊤ as

Q (ℓ)(z)
def=

(
T (ℓ)T (ℓ)⊤− zInℓ

)−1
.

We will often drop the dependence in z to simplify notations.
Since Q (ℓ)−1Q (ℓ) = Inℓ and T (ℓ) = P (ℓ) + 1p

N
N (ℓ), we have,

P (ℓ)T (ℓ)⊤Q (ℓ) + 1p
N

N (ℓ)T (ℓ)⊤Q (ℓ) − zQ (ℓ) = Inℓ . (5.7)

5.A.1 Expressions with Stein’s Lemma

Using Stein’s lemma (Lemma 2.18), we find the following expressions.

E
[

P (ℓ)T (ℓ)⊤Q (ℓ)
]
= E

[
P (ℓ)P (ℓ)⊤Q (ℓ)

]
− 1

N
E
[

P (ℓ)T (ℓ)⊤Q (ℓ) TrQ (ℓ) +P (ℓ)T (ℓ)⊤Q (ℓ)2
]

, (5.8)

E
[

N (ℓ)T (ℓ)⊤Q (ℓ)
]
=

∏
ℓ′ ̸=ℓnℓ′p

N
E
[

Q (ℓ)
]
− 1p

N
E
[

(nℓ+1)Q (ℓ) + z
(
Q (ℓ)2 +Q (ℓ) TrQ (ℓ)

)]
. (5.9)

Derivatives of Q (ℓ) Firstly, we need to show that

∂Q(ℓ)
a,b

∂N (ℓ)
c,d

=− 1p
N

(
Q(ℓ)

a,c

[
T (ℓ)⊤Q (ℓ)

]
d ,b

+
[

Q (ℓ)T (ℓ)
]

a,d
Q(ℓ)

c,b

)
. (5.10)

Indeed, using the fact that ∂Q (ℓ) =−Q (ℓ)∂(T (ℓ)T (ℓ)⊤)Q (ℓ), we have,

∂Q(ℓ)
a,b

∂N (ℓ)
c,d

=−
Q (ℓ) ∂T (ℓ)

∂N (ℓ)
c,d

T (ℓ)⊤Q (ℓ)


a,b

−
Q (ℓ)T (ℓ) ∂T (ℓ)⊤

∂N (ℓ)
c,d

Q (ℓ)


a,b

and, since T (ℓ) = P (ℓ) + 1p
N

N (ℓ),Q (ℓ) ∂T (ℓ)

∂N (ℓ)
c,d

T (ℓ)⊤Q (ℓ)


a,b

= 1p
N

Q(ℓ)
a,c

[
T (ℓ)⊤Q (ℓ)

]
d ,b

,

Q (ℓ)T (ℓ) ∂T (ℓ)⊤

∂N (ℓ)
c,d

Q (ℓ)


a,b

= 1p
N

[
Q (ℓ)T (ℓ)

]
a,d

Q(ℓ)
c,b .

Proof of Equation (5.8) Since T (ℓ) = P (ℓ) + 1p
N

N (ℓ), we have,

E[P (ℓ)T (ℓ)⊤Q (ℓ)] = E[P (ℓ)P (ℓ)⊤Q (ℓ)]+ 1p
N
E[P (ℓ)N (ℓ)⊤Q (ℓ)].

To deal with the rightmost term, we successively use Stein’s lemma (Lemma 2.18) and Equation (5.10).

E
[

P (ℓ)N (ℓ)⊤Q (ℓ)
]

i , j
=

∏
ℓ′ ̸=ℓnℓ′∑
k=1

nℓ∑
l=1
E
[

P (ℓ)
i ,k N (ℓ)

l ,k Q(ℓ)
l , j

]
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=
∏
ℓ′ ̸=ℓnℓ′∑
k=1

nℓ∑
l=1
E

P (ℓ)
i ,k

∂Q(ℓ)
l , j

∂N (ℓ)
l ,k


= − 1p

N

∏
ℓ′ ̸=ℓnℓ′∑
k=1

nℓ∑
l=1
E

[
P (ℓ)

i ,k Q(ℓ)
l ,l

[
T (ℓ)⊤Q (ℓ)

]
k, j

]

− 1p
N

∏
ℓ′ ̸=ℓnℓ′∑
k=1

nℓ∑
l=1
E
[

P (ℓ)
i ,k

[
Q (ℓ)T (ℓ)

]
l ,k

Q(ℓ)
l , j

]
=− 1p

N
E
[

P (ℓ)T (ℓ)⊤Q (ℓ) TrQ (ℓ) +P (ℓ)T (ℓ)⊤Q (ℓ)2
]

i , j
.

Proof of Equation (5.9) We proceed similarly with Stein’s lemma (Lemma 2.18) and Equation (5.10).

E
[

N (ℓ)T (ℓ)⊤Q (ℓ)
]

i , j

=
∏
ℓ′ ̸=ℓnℓ′∑
k=1

nℓ∑
l=1
E
[

N (ℓ)
i ,k T (ℓ)

l ,k Q(ℓ)
l , j

]

=
∏
ℓ′ ̸=ℓnℓ′∑
k=1

nℓ∑
l=1
E

 ∂T (ℓ)
l ,k

∂N (ℓ)
i ,k

Q(ℓ)
l , j +T (ℓ)

l ,k

∂Q(ℓ)
l , j

∂N (ℓ)
i ,k


=

∏
ℓ′ ̸=ℓnℓ′p

N
E
[

Q (ℓ)
]

i , j
− 1p

N

∏
ℓ′ ̸=ℓnℓ′∑
k=1

nℓ∑
l=1
E

[
T (ℓ)

l ,k Q(ℓ)
l ,i

[
T (ℓ)⊤Q (ℓ)

]
k, j

]

− 1p
N

∏
ℓ′ ̸=ℓnℓ′∑
k=1

nℓ∑
l=1
E
[

T (ℓ)
l ,k

[
Q (ℓ)T (ℓ)

]
l ,k

Q(ℓ)
i , j

]
=

∏
ℓ′ ̸=ℓnℓ′p

N
E
[

Q (ℓ)
]

i , j
− 1p

N
E
[

Q (ℓ)T (ℓ)T (ℓ)⊤Q (ℓ) +Q (ℓ) TrT (ℓ)T (ℓ)⊤Q (ℓ)
]

i , j
.

Since T (ℓ)T (ℓ)⊤Q (ℓ) − zQ (ℓ) = Inℓ , we find the result stated in Equation (5.9).

5.A.2 Asymptotic Behavior of the Resolvent

Taking the expectation of Equation (5.7) and injecting Equation (5.9) yields

E
[

P (ℓ)T (ℓ)⊤Q (ℓ)
]
+

∏
ℓ′ ̸=ℓnℓ′

N
E
[

Q (ℓ)
]
− 1

N
E
[

(nℓ+1)Q (ℓ) + z
(
Q (ℓ)2 +Q (ℓ) TrQ (ℓ)

)]
− zE

[
Q (ℓ)

]
= Inℓ .

We rearrange this expression into the more convenient following form,

z
nℓ
N
E

[
Q (ℓ) TrQ (ℓ)

nℓ

]
+

(
z + nℓ−

∏
ℓ′ ̸=ℓnℓ′

N

)
E
[

Q (ℓ)
]
+ Inℓ =− 1

N
E
[

Q (ℓ) + zQ (ℓ)2
]
+E

[
P (ℓ)T (ℓ)⊤Q (ℓ)

]
.

Here, the divergence of the spectrum of T (ℓ)T (ℓ)⊤ becomes problematic: its resolvent Q (ℓ) vanishes
asymptotically, allowing the presence of the diverging coefficient 1

N

∏
ℓ′ ̸=ℓnℓ′ in the previous equation.

To bypass this difficulty, we proceed to a rescaling,

z̃
def=

z −µ(ℓ)
N

σN
, Q̃ (ℓ)(z̃)

def=
(

T (ℓ)T (ℓ)⊤−µ(ℓ)
N Inℓ

σN
− z̃Inℓ

)−1

=σN Q (ℓ)(z),

128



5.A. Proof of Theorem 5.1

with µ(ℓ)
N = 1

N

∏
ℓ′ ̸=ℓ

nℓ′ , σN = 1

N

√ ∏
ℓ∈[d ]

nℓ.

This changes our equation into

µ(ℓ)
N +σN z̃

σ2
N

nℓ
N
E

[
Q̃ (ℓ) TrQ̃ (ℓ)

nℓ

]
+

(
µ(ℓ)

N

σN
+ z̃ + nℓ−

∏
ℓ′ ̸=ℓnℓ′

σN N

)
E
[

Q̃ (ℓ)
]
+ Inℓ

=− 1

σN N
E

[
Q̃ (ℓ) +

(
µ(ℓ)

N

σN
+ z̃

)
Q̃ (ℓ)2

]
+ 1

σN
E
[

P (ℓ)T (ℓ)⊤Q̃ (ℓ)
]

.

Let us define m̃(ℓ)
N : z̃ 7→ 1

nℓ
TrQ̃ (ℓ)(z̃), the Stieltjes transform of the empirical spectral distribution of

1
σN

[
T (ℓ)T (ℓ)⊤−µ(ℓ)

N Inℓ

]
. With this definition, and using the fact that

µ(ℓ)
N

σ2
N

nℓ
N = 1, we can rewrite the

previous relation as

E
[

m̃(ℓ)
N (z̃)Q̃ (ℓ)

]
+ z̃E

[
Q̃ (ℓ)

]
+ Inℓ −

1

σN
E
[

P (ℓ)T (ℓ)⊤Q̃ (ℓ)
]

=− 1

σN

nℓ
N
E
[(

z̃m̃(ℓ)
N (z̃)+1

)
Q̃ (ℓ)

]
− 1

N

(
µ(ℓ)

N

σ2
N

+ z̃

σN

)
E
[

Q̃ (ℓ)2
]
− 1

σN

1

N
E
[

Q̃ (ℓ)
]

(5.11)

where we have kept only the non-vanishing terms on the left-hand side.

5.A.3 Concentration of Bilinear Forms and Traces

Let us show that E[Q̃ (ℓ)] is a deterministic equivalent of Q̃ (ℓ) (Definition 2.17). That is, for all bounded
(sequences of) vectors a,b ∈Rnℓ and matrices A ∈Rnℓ×nℓ ,

a⊤
(
Q̃ (ℓ) −E

[
Q̃ (ℓ)

])
b

a.s.−−−−−→
N→+∞

0 and
1

nℓ
Tr A

(
Q̃ (ℓ) −E

[
Q̃ (ℓ)

])
a.s.−−−−−→

N→+∞
0.

To that end, we use the Poincaré-Nash inequality (Lemma 2.19) to prove that

Var
(

a⊤Q̃ (ℓ)b
)
É 4

σ2
N N

∥a∥2∥b∥2E

[∥∥∥Q̃ (ℓ)
∥∥∥4∥∥∥T (ℓ)

∥∥∥2
]
=Oz̃ (N−1),

E

[∣∣∣a⊤
(
Q̃ (ℓ) −E

[
Q̃ (ℓ)

])
b
∣∣∣4

]
É 16

σ2
N N

∥a∥2∥b∥2E

[∣∣∣a⊤
(
Q̃ (ℓ) −E

[
Q̃ (ℓ)

])
b
∣∣∣2∥∥∥Q̃ (ℓ)

∥∥∥4∥∥∥T (ℓ)
∥∥∥2

]
+Var

(
a⊤Q̃ (ℓ)b

)2

=Oz̃ (N−2)

and Var

(
1

nℓ
Tr AQ̃ (ℓ)

)
É 4

N

1

σ2
N N

∥A∥2E

[∥∥∥Q̃ (ℓ)
∥∥∥4∥∥∥T (ℓ)

∥∥∥2
]
=Oz̃ (N−2).

Then, we conclude with Lemma 2.20. The computations are similar to those performed in Section
2.3.1 therefore we skip them for brevity.

5.A.4 Expansion of the Mean Empirical Stieltjes Transform

Let Q̃ (ℓ)
0 denote the resolvent of 1

σN

[
1
N N (ℓ)N (ℓ)⊤−µ(ℓ)

N Inℓ

]
. Using the resolvent identity (Proposition

2.21), we can see that 1
nℓ

Tr(Q̃ (ℓ)
0 − Q̃ (ℓ)) = Oz̃ (N−1) therefore the low-rank perturbation P (ℓ) does not

change the limiting spectral distribution and we can consider P (ℓ) = 0nℓ×
∏
ℓ′ ̸=ℓnℓ′ from now on.
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Applying 1
nℓ

Tr to Equation (5.11) and using the fact that 1
nℓ

TrQ̃ (ℓ)2 = m̃(ℓ)′
N as well as E[m̃(ℓ)2

N (z̃)] =
E[m̃(ℓ)

N (z̃)]2 +Var(m̃(ℓ)
N (z̃)) with Var(m̃(ℓ)

N (z̃)) =Oz̃ (N−2), we find

E
[

m̃(ℓ)
N (z̃)

]2
+ z̃E

[
m̃(ℓ)

N (z̃)
]
+1

=− 1

σN

nℓ
N
E
[

z̃m̃(ℓ)2
N (z̃)+m̃(ℓ)

N (z̃)
]
− 1

N

µ(ℓ)
N

σ2
N

E
[

m̃(ℓ)′
N (z̃)

]
+Oz̃ (N−min( d

2 ,2)) (5.12)

where the Oz̃ (N−min( d
2 ,2)) stems from σN =Θ(N

d−2
2 ). We know that the Stieltjes transform mSC of the

Wigner semicircle distribution on [−2,2] satisfies m2
SC(z̃)+ z̃mSC(z̃)+ 1 = 0 for all z̃ ∈ C \ [−2,2] (see

Section 2.2.1). Let us subtract this relation to Equation (5.12) and factorize by E[m̃(ℓ)
N (z̃)] − mSC(z̃)

using the relation a2 −b2 = (a −b)(a +b).(
E
[

m̃(ℓ)
N (z̃)

]
−mSC(z̃)

)(
E
[

m̃(ℓ)
N (z̃)

]
+mSC(z̃)+ z̃

)
=− 1

σN

nℓ
N
E
[

z̃m̃(ℓ)2
N (z̃)+m̃(ℓ)

N (z̃)
]
− 1

N

µ(ℓ)
N

σ2
N

E
[

m̃(ℓ)′
N (z̃)

]
+Oz̃ (N−min( d

2 ,2)).

Let g (ℓ)
N : z̃ 7→ −1

z̃+mSC(z̃)+E[m̃(ℓ)
N (z̃)]

. Since, mSC and E[m̃(ℓ)
N ] are Stieltjes transforms (Corollary 2.9), we have

|g (ℓ)
N (z̃)| É |ℑ[z̃ +mSC(z̃)+E[m̃(ℓ)

N (z̃)]]|−1 É |ℑz̃|−1 therefore

E
[

m̃(ℓ)
N (z̃)

]
−mSC(z̃)

= g (ℓ)
N (z̃)

[
1

σN

nℓ
N
E
[

z̃m̃(ℓ)2
N (z̃)+m̃(ℓ)

N (z̃)
]
+ 1

N

µ(ℓ)
N

σ2
N

E
[

m̃(ℓ)′
N (z̃)

]]
+Oz̃ (N−min( d

2 ,2)) (5.13)

= g (ℓ)
N (z̃)

1

σN

nℓ
N
E
[

z̃m̃(ℓ)2
N (z̃)+m̃(ℓ)

N (z̃)
]
+Oz̃ (N−1) (5.14)

=Oz̃ (N−min( d−2
2 ,1)). (5.15)

Notice that the dominant term in the difference E[m̃(ℓ)
N (z̃)] − mSC(z̃) differs depending on whether

d = 3, d = 4 or d Ê 5 because σN = Θ(N
d−2

2 ). The higher d , the faster the convergence of the empir-
ical spectral distribution to the semicircle distribution. Indeed, at this point, Equation (5.15) already
shows the pointwise convergence of E[m̃(ℓ)

N (z̃)] to mSC and therefore the weak convergence of the cor-
responding distributions (Proposition 2.10). Yet, in order to show the confinement of the spectrum
below, we need an explicit expansion of E[m̃(ℓ)

N (z̃)] with all the terms not dominated by N−1, which we
state in the following lemma.

Lemma 5.13. E[m̃(ℓ)
N (z̃)] = mSC(z̃)+h(ℓ)

N (z̃)+Oz̃ (N−min( d
2 ,2)) with

h(ℓ)
N (z̃) = τ(ℓ)

N (z̃)

(
1

σN

nℓ
N

(
z̃ t (ℓ)2

N (z̃)+ t (ℓ)
N (z̃)

)
− 1

N

µ(ℓ)
N

σ2
N

mSC(z̃)

z̃ +2mSC(z̃)

)

where τ(ℓ)
N (z̃) = −1

z̃ +2mSC(z̃)

(
1+ 1

σN

nℓ
N

z̃m2
SC(z̃)+mSC(z̃)

(z̃ +2mSC(z̃))2

)

and t (ℓ)
N (z̃) = mSC(z̃)− 1

σN

nℓ
N

z̃m2
SC(z̃)+mSC(z̃)

z̃ +2mSC(z̃)
.
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Proof. Firstly, with the Poincaré-Nash inequality (Lemma 2.19), we can show that

Var(m̃(ℓ)′
N (z̃)) É

nℓ∑
i=1

∏
ℓ′ ̸=ℓnℓ′∑

j=1
E

∣∣∣∣∣∣ 1

nℓ

∂TrQ̃ (ℓ)2

∂N (ℓ)
i , j

∣∣∣∣∣∣
2É 16

nℓσ2
N N 2

E

[∥∥∥Q̃ (ℓ)
∥∥∥6∥∥∥N (ℓ)

∥∥∥2
]
=Oz̃ (N−2).

Taking 1
nℓ

Tr of Equation (5.11) with P (ℓ) = 0nℓ×
∏
ℓ′ ̸=ℓnℓ′ and differentiating with respect to the complex

variable z̃ under E (which is possible because the integrand can be upper bounded on every compact
subset of C\R), we find

E
[(

2m̃(ℓ)
N (z̃)+ z̃

)
m̃(ℓ)′

N (z̃)+m̃(ℓ)
N (z̃)

]
= E

[
− 1

σN

nℓ
N

(
m̃(ℓ)2

N (z̃)+2z̃m̃(ℓ)
N (z̃)m̃(ℓ)′

N (z̃)+m̃(ℓ)′
N (z̃)

)
− 1

N

(
µ(ℓ)

N

σ2
N

+ z̃

σN

)
m̃(ℓ)′′

N (z̃)− 2m̃(ℓ)′(z̃)

σN N

]
. (5.16)

Then, since Varm̃(ℓ)
N (z̃) = Oz̃ (N−2) and Varm̃(ℓ)′

N (z̃) = Oz̃ (N−2), we have E[m̃(ℓ)2
N (z̃)] = E[m̃(ℓ)

N (z̃)]2 +
Oz̃ (N−2) and E[m̃(ℓ)

N (z̃)m̃(ℓ)′
N (z̃)] = E[m̃(ℓ)

N (z̃)]E[m̃(ℓ)′
N (z̃)]+Oz̃ (N−2) (using the Cauchy-Schwarz inequal-

ity to upper bound the covariance). And, with the fact that E[m̃(ℓ)
N (z̃)] = mSC(z̃)+Oz̃ (N−min( d−2

2 ,1))
(Equation (5.15)), we obtain from Equation (5.16) that

E
[

m̃(ℓ)′
N (z̃)

]
= −mSC(z̃)

z̃ +2mSC(z̃)
+Oz̃ (N−min( d−2

2 ,1))

since |z̃ +2mSC(z̃)|−1 É |z̃|−1 É |ℑz̃|−1. Moreover, using Equation (5.15) in Equation (5.14), we find

E
[

m̃(ℓ)
N (z̃)

]
= mSC(z̃)+ g (ℓ)

N (z̃)
1

σN

nℓ
N

(
z̃m2

SC(z̃)+mSC(z̃)
)+Oz̃ (N−1). (5.17)

We can now inject the last two relations into Equation (5.13):

E
[

m̃(ℓ)
N (z̃)

]
= mSC(z̃)+ g (ℓ)

N (z̃)
z̃

σN

nℓ
N

(
mSC(z̃)+ g (ℓ)

N (z̃)
1

σN

nℓ
N

(
z̃m2

SC(z̃)+mSC(z̃)
))2

+ g (ℓ)
N (z̃)

1

σN

nℓ
N

(
mSC(z̃)+ g (ℓ)

N (z̃)
1

σN

nℓ
N

(
z̃m2

SC(z̃)+mSC(z̃)
))

− g (ℓ)
N (z̃)

1

N

µ(ℓ)
N

σ2
N

mSC(z̃)

z̃ +2mSC(z̃)
+Oz̃ (N−min( d

2 ,2)). (5.18)

We only need to handle the asymptotic behavior of g (ℓ)
N (z̃) to conclude the proof. With Equation (5.15)

and the fact that |z̃ +2mSC(z̃)|−1 É |ℑz̃|−1, we have g (ℓ)
N (z̃) = −1

z̃+2mSC(z̃) +Oz̃ (N−min( d−2
2 ,1)). We can then

use this relation in Equation (5.17):

E
[

m̃(ℓ)
N (z̃)

]
−mSC(z̃) =− 1

σN

nℓ
N

z̃m2
SC(z̃)+mSC(z̃)

z̃ +2mSC(z̃)
+Oz̃ (N−1).

Therefore, we have

g (ℓ)
N (z̃) = −1

z̃ +mSC(z̃)+E
[

m̃(ℓ)
N (z̃)

] = −1

z̃ +2mSC(z̃)

1+
E
[

m̃(ℓ)
N (z̃)

]
−mSC(z̃)

z̃ +2mSC(z̃)

−1
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= −1

z̃ +2mSC(z̃)

1−
E
[

m̃(ℓ)
N (z̃)

]
−mSC(z̃)

z̃ +2mSC(z̃)
+Oz̃ (N−min(d−2,2))


= −1

z̃ +2mSC(z̃)

(
1+ 1

σN

nℓ
N

z̃m2
SC(z̃)+mSC(z̃)

(z̃ +2mSC(z̃))2

)
+Oz̃ (N−1).

Eventually, Equation (5.18) becomes

E
[

m̃(ℓ)
N (z̃)

]
= mSC(z̃)+τ(ℓ)

N (z̃)
z̃

σN

nℓ
N

(
mSC(z̃)− 1

σN

nℓ
N

z̃m2
SC(z̃)+mSC(z̃)

z̃ +2mSC(z̃)

)2

+τ(ℓ)
N (z̃)

1

σN

nℓ
N

(
mSC(z̃)− 1

σN

nℓ
N

z̃m2
SC(z̃)+mSC(z̃)

z̃ +2mSC(z̃)

)

−τ(ℓ)
N (z̃)

1

N

µ(ℓ)
N

σ2
N

mSC(z̃)

z̃ +2mSC(z̃)
+Oz̃ (N−min( d

2 ,2)).

with τ(ℓ)
N : z̃ 7→ −1

z̃+2mSC(z̃)

(
1+ 1

σN

nℓ
N

z̃m2
SC(z̃)+mSC(z̃)

(z̃+2mSC(z̃))2

)
.

5.A.5 Confinement of the Spectrum

The confinement of the spectrum is proven in the same manner as in Section 2.3.2. Let ε> 0, ϕ : R 7→
[0,1] be an infinitely differentiable function which equals 1 on [−2,2] and 0 on R \ [−2− ε,2+ ε] and

ψ= 1−ϕ. We want to show that Tr
(
ψ

(
1
σN

[
1
N N (ℓ)N (ℓ)⊤−µ(ℓ)

N Inℓ

]))
→ 0 almost surely as N →+∞.

First of all, we show the convergence in mean with the Helffer-Sjöstrand formula (Proposition
2.12).

E

[
1

nℓ
Tr

(
ϕ

(
1

σN

[
1

N
N (ℓ)N (ℓ)⊤−µ(ℓ)

N Inℓ

]))]
= 2

π
ℜ

∫
C+

∂Φq [ϕ]

∂ ¯̃z
(z̃)E

[
m̃(ℓ)

N (z̃)
]

dz̃

= 2

π
ℜ

∫
C+

∂Φq [ϕ]

∂ ¯̃z
(z̃)mSC(z̃) dz̃ + 2

π
ℜ

∫
C+

∂Φq [ϕ]

∂ ¯̃z
(z̃)h(ℓ)

N (z̃) dz̃

+ 2

π
ℜ

∫
C+

∂Φq [ϕ]

∂ ¯̃z
(z̃)×Oz̃ (N−min( d

2 ,2)) dz̃.

where we have used the expression of E[m̃(ℓ)
N (z̃)] given by Lemma 5.13. The first integral is

∫
Rϕ dµSC =

1 while the last one is O (N−min( d
2 ,2)) with q chosen sufficiently large so that

∂Φq [ϕ]

∂ ¯̃z
(z̃) cancels the di-

vergence of Oz̃ (N−min( d
2 ,2)) near the real axis. In order to evaluate the second integral, we perform an

integration by parts:

2

π
ℜ

∫
C+

∂Φq [ϕ]

∂ ¯̃z
(z̃)h(ℓ)

N (z̃) dz̃ = 2

π
ℜ

[
1

2

∫ +∞

0

(∫ +∞

−∞

∂Φq [ϕ]

∂x
(x + iy)h(ℓ)

N (x + iy) dx

)
dy

+ i

2

∫ +∞

−∞

(∫ +∞

0

∂Φq [ϕ]

∂y
(x + iy)h(ℓ)

N (x + iy) dy

)
dx

]
= 2

π
ℜ

[−i

2

∫
R

lim
y↓0

{
Φq [ϕ](x + iy)h(ℓ)

N (x + iy)
}

dx −
∫
C+
Φq [ϕ](z̃)

∂h

∂ ¯̃z
(z̃) dz̃

]
.

Since h(ℓ)
N is an analytic function (as sums and products of Stieltjes transforms), we have ∂h/∂ ¯̃z =

0 by the Cauchy-Riemann equations. Moreover, we have limy↓0Φq [ϕ](x + iy) = ϕ(x) and, from the

132



5.A. Proof of Theorem 5.1

definition of h(ℓ)
N , limy↓0ℑ[h(ℓ)

N (x + iy)] = 0 for all x ∈R\ [−2,2]. Therefore,

2

π
ℜ

∫
C+

∂Φq [ϕ]

∂ ¯̃z
(z̃)h(ℓ)

N (z̃) dz̃ = lim
y↓0

1

π

∫ 2

−2
ℑ[h(ℓ)

N (x + iy)] dx.

We use Lemma 2.14 to show that this integral equals limy→+∞−iyh(ℓ)
N (iy) = 0. The function h(ℓ)

N is ana-

lytic onC\[−2,2], lim|z̃|→+∞ h(z̃) = 0 and h(ℓ)
N ( ¯̃z) = h(z̃) for all z̃ ∈C\[−2,2]. Thus, we just need to show

that there exist an integer n0 and a constant C > 0 such that |h(ℓ)
N (z̃)| É C max(Dist(z̃, [−2,2])−n0 ,1)

for all z̃ ∈ C \ [−2,2]. Firstly, we find an upper bound for t (ℓ)
N (z̃). Since z̃ 7→ −1

z̃+2mSC(z̃) is the Stieltjes

transform of a probability measure on [−2,2] and −(z̃mSC(z̃)+1) = m2
SC(z̃), we have∣∣∣t (ℓ)

N (z̃)
∣∣∣= |mSC(z̃)|

∣∣∣∣1− 1

σN

nℓ
N

z̃mSC(z̃)+1

z̃ +2mSC(z̃)

∣∣∣∣É 1

Dist(z̃, [−2,2])

(
1+ 1

σN

nℓ
N

1

Dist(z̃, [−2,2])3

)
É

(
1+ 1

σN

nℓ
N

)
max(Dist(z̃, [−2,2])−4,1).

Moreover, since |z̃| É Dist(z̃, [−2,2])+2, we also have∣∣∣z̃ t (ℓ)
N (z̃)

∣∣∣É (
1+ 2

Dist(z̃, [−2,2])

)(
1+ 1

σN

nℓ
N

1

Dist(z̃, [−2,2])3

)
É 3

(
1+ 1

σN

nℓ
N

)
max(Dist(z̃, [−2,2])−4,1).

Similarly,∣∣∣τ(ℓ)
N (z̃)

∣∣∣= ∣∣∣∣ −1

z̃ +2mSC(z̃)

∣∣∣∣∣∣∣∣1+ 1

σN

nℓ
N

mSC(z̃)(z̃mSC(z̃)+1)

(z̃ +2mSC(z̃))2

∣∣∣∣É (
1+ 1

σN

nℓ
N

)
max(Dist(z̃, [−2,2])−6,1).

Hence, we can upper bound |h(ℓ)
N (z̃)|:

∣∣∣h(ℓ)
N (z̃)

∣∣∣É ∣∣∣τ(ℓ)
N (z̃)

∣∣∣( 1

σN

nℓ
N

∣∣∣t (ℓ)
N (z̃)

∣∣∣(∣∣∣z̃ t (ℓ)
N (z̃)

∣∣∣+1
)
+ 1

N

µ(ℓ)
N

σ2
N

∣∣∣∣ mSC(z̃)

z̃ +2mSC(z̃)

∣∣∣∣
)

É
(
1+ 1

σN

nℓ
N

)[
1

σN

nℓ
N

(
1+ 1

σN

nℓ
N

)[
3

(
1+ 1

σN

nℓ
N

)
+1

]
+ 1

N

µ(ℓ)
N

σ2
N

]
max(Dist(z̃, [−2,2])−14,1).

Therefore we can conclude that 2
πℜ

∫
C+

∂Φq [ϕ]

∂ ¯̃z
(z̃)h(ℓ)

N (z̃) dz̃ = 0 and

E

[
1

nℓ
Tr

(
ϕ

(
1

σN

[
1

N
N (ℓ)N (ℓ)⊤−µ(ℓ)

N Inℓ

]))]
= 1+O (N−min( d

2 ,2)),

i.e., E

[
Tr

(
ψ

(
1

σN

[
1

N
N (ℓ)N (ℓ)⊤−µ(ℓ)

N Inℓ

]))]
=O (N−min( d−2

2 ,1)).

Secondly, we prove the almost sure convergence of Tr
(
ψ

(
1
σN

[
1
N N (ℓ)N (ℓ)⊤−µ(ℓ)

N Inℓ

]))
to 0 by show-

ing that its variance is O (N−min( d
2 ,2)) (and Lemma 2.20 implies the result). With the Poincaré-Nash

inequality (Lemma 2.19), we have

Var

(
Tr

(
ψ

(
1

σN

[
1

N
N (ℓ)N (ℓ)⊤−µ(ℓ)

N Inℓ

])))
= Var

(
Tr

(
ϕ

(
1

σN

[
1

N
N (ℓ)N (ℓ)⊤−µ(ℓ)

N Inℓ

])))

É
nℓ∑

i=1

∏
ℓ′ ̸=ℓnℓ′∑

j=1
E


∣∣∣∣∣∣
∂Tr

(
ϕ

(
1
σN

[
1
N N (ℓ)N (ℓ)⊤−µ(ℓ)

N Inℓ

]))
∂N (ℓ)

i , j

∣∣∣∣∣∣
2
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=
nℓ∑

i=1

∏
ℓ′ ̸=ℓnℓ′∑

j=1
E

∣∣∣∣∣∣Tr

ϕ′
(

1

σN

[
1

N
N (ℓ)N (ℓ)⊤−µ(ℓ)

N Inℓ

])
∂

∂N (ℓ)
i , j

[
1

σN

1

N
N (ℓ)N (ℓ)⊤

]∣∣∣∣∣∣
2

= 1

σ2
N

1

N 2

nℓ∑
i=1

∏
ℓ′ ̸=ℓnℓ′∑

j=1
E

[∣∣∣∣∣
[

2ϕ′
(

1

σN

[
1

N
N (ℓ)N (ℓ)⊤−µ(ℓ)

N Inℓ

])
N (ℓ)

]
i , j

∣∣∣∣∣
2]

= 1

σN

4

N
E

[
Tru

(
1

σN

[
1

N
N (ℓ)N (ℓ)⊤−µ(ℓ)

N Inℓ

])]
+ 4

N

µ(ℓ)
N

σ2
N

E

[
Trϕ′2

(
1

σN

[
1

N
N (ℓ)N (ℓ)⊤−µ(ℓ)

N Inℓ

])]

where u : x 7→ xϕ′2(x) andϕ′2 are infinitely differentiable functions with compact support which equal
0 on [−2,2]. Hence, applying similarly the Helffer-Sjöstrand formula (Proposition 2.12), we find

1

σN

4

N
E

[
Tru

(
1

σN

[
1

N
N (ℓ)N (ℓ)⊤−µ(ℓ)

N Inℓ

])]
= 4

σN

nℓ
N

2

π
ℜ

∫
C+

∂Φq [u]

∂ ¯̃z
(z̃)E

[
m̃(ℓ)

N (z̃)
]

dz̃

=O (N−min(d−1, d+2
2 ))

and

4

N

µ(ℓ)
N

σ2
N

E

[
Trϕ′2

(
1

σN

[
1

N
N (ℓ)N (ℓ)⊤−µ(ℓ)

N Inℓ

])]
= 4

nℓ
N

µ(ℓ)
N

σ2
N

2

π
ℜ

∫
C+

∂Φq [ϕ′]

∂ ¯̃z
(z̃)E

[
m̃(ℓ)

N (z̃)
]

dz̃

=O (N−min( d
2 ,2))

for q chosen sufficiently large. Thus, Var
(
Tr

(
ψ

(
1
σN

[
1
N N (ℓ)N (ℓ)⊤−µ(ℓ)

N Inℓ

])))
=O (N−min( d

2 ,2)).

5.A.6 Deterministic Equivalent

With the rescaling (z,Q (ℓ)(z)) æ (z̃,Q̃ (ℓ)(z̃)), Equation (5.8) becomes

1

σN
E
[

P (ℓ)T (ℓ)⊤Q̃ (ℓ)
]
= 1

σN
E
[

P (ℓ)P (ℓ)⊤Q̃ (ℓ)
]
− 1

σ2
N

E

[
nℓ
N

m̃(ℓ)
N (z̃)P (ℓ)T (ℓ)⊤Q̃ (ℓ) + 1

N
P (ℓ)T (ℓ)⊤Q̃ (ℓ)2

]

where

∥∥∥∥ 1
σ2

N
E
[

nℓ
N m̃(ℓ)

N (z̃)P (ℓ)T (ℓ)⊤Q̃ (ℓ) + 1
N P (ℓ)T (ℓ)⊤Q̃ (ℓ)2

]∥∥∥∥→ 0 as N →+∞ since ∥P (ℓ)∥ =O (N
d−2

4 ) and

∥T (ℓ)∥ =O (N
d−2

2 ). Hence, with Equation (5.11) and Equation (5.15), we have∥∥∥∥mSC(z̃)E
[

Q̃ (ℓ)
]
+ z̃E

[
Q̃ (ℓ)

]
+ Inℓ −

1

σN
P (ℓ)P (ℓ)⊤E

[
Q̃ (ℓ)

]∥∥∥∥−−−−−→
N→+∞

0

and, since mSC(z̃)+ z̃ = −1
mSC(z̃) , we can define the following deterministic equivalent (Definition 2.17):

Q̃ (ℓ)(z̃) ←→ Q̄ (ℓ)(z̃)
def=

(
1

σN
P (ℓ)P (ℓ)⊤+ 1

mSC(z̃)
Inℓ

)−1

.

5.B Proof of Theorem 5.5

Recall that Q̃ (ℓ) is the resolvent of 1
σN

[
T (ℓ)T (ℓ)⊤−µ(ℓ)

N Inℓ

]
while Q̃ (ℓ)

0 denotes the resolvent of the same

model without signal, 1
σN

[
1
N N (ℓ)N (ℓ)⊤−µ(ℓ)

N Inℓ

]
.
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5.B.1 Convergence of Bilinear Forms

First of all, we must show the almost sure convergence a⊤Q̃ (ℓ)
0 b −mSC(z̃)〈a,b〉 → 0 for all bounded

(sequences of) vectors a,b ∈Rnℓ . Given the concentration result proven in Section 5.A.3, we just need
to show that a⊤E[Q̃ (ℓ)

0 ]b −mSC(z̃)〈a,b〉→ 0 as N →+∞.

Let us multiply Equation (5.11) when P (ℓ) = 0nℓ×
∏
ℓ′ ̸=ℓnℓ′ by a⊤ on the left and b on the right.

E
[

m̃(ℓ)
N (z̃)a⊤Q̃ (ℓ)

0 b
]
+ z̃E

[
a⊤Q̃ (ℓ)

0 b
]
+〈a,b〉 =Oz (N−min( d−2

2 ,1)).

Then, using the fact that E[m̃(ℓ)
N (z̃)] = mSC(z̃)+Oz̃ (N−min( d−2

2 ,1)) and mSC(z̃)+ z̃ = −1
mSC(z̃) , we obtain the

desired result: E[a⊤Q̃ (ℓ)
0 b] = mSC(z̃)〈a,b〉+Oz̃ (N−min( d−2

2 ,1)).

5.B.2 Isolated Eigenvalues

We seek eigenvalues of 1
σN

[
T (ℓ)T (ℓ)⊤−µ(ℓ)

N Inℓ

]
which stay outside the support of the semicircle dis-

tribution [−2,2]. That is, we seek ξ̃ ∈R\ [−2,2] such that

det

(
1

σN

[
T (ℓ)T (ℓ)⊤−µ(ℓ)

N Inℓ

]
− ξ̃Inℓ

)
= 0.

Using the expansion T (ℓ) = P (ℓ) + 1p
N

N (ℓ), this is equivalent to

det

(
1

σN

(
P (ℓ)P (ℓ)⊤+ 1p

N
P (ℓ)N (ℓ)⊤+ 1p

N
N (ℓ)P (ℓ)⊤

)
Q̃ (ℓ)

0 (ξ̃)+ Inℓ

)
×det

(
1

σN

[
1

N
N (ℓ)N (ℓ)⊤−µ(ℓ)

N Inℓ

]
− ξ̃Inℓ

)
= 0

where the second determinant is non-zero for N large enough from the confinement of the spec-
trum proven in Section 5.A.5. Then, we know that P= �H; X (1), . . . , X (d)� therefore P (ℓ) = X (ℓ)L(ℓ) with

L(ℓ) = H (ℓ)
(⊗

ℓ′ ̸=ℓ X (ℓ′)⊤
)

and we can write 1
σN

(
P (ℓ)P (ℓ)⊤+ 1p

N
P (ℓ)N (ℓ)⊤+ 1p

N
N (ℓ)P (ℓ)⊤

)
as the matrix

product
[

X (ℓ) X (ℓ) 1
σN

p
N

N (ℓ)L(ℓ)⊤ ] 1
σN

H (ℓ) H (ℓ)⊤X (ℓ)⊤

1
σN

p
N

L(ℓ)N (ℓ)⊤

X (ℓ)⊤

. Thus, with Sylvester’s identity (Proposition 2.22),

we are left to evaluate a 3rℓ×3rℓ determinant:

det


1
σN

H (ℓ) H (ℓ)⊤X (ℓ)⊤Q̃(ℓ)
0 (ξ̃)X (ℓ)+Irℓ

1
σN

H (ℓ) H (ℓ)⊤X (ℓ)⊤Q̃(ℓ)
0 (ξ̃)X (ℓ) 1

σ2
N
p

N
H (ℓ) H (ℓ)⊤X (ℓ)⊤Q̃(ℓ)

0 (ξ̃)N (ℓ)L(ℓ)⊤

1
σN

p
N

L(ℓ)N (ℓ)⊤Q̃(ℓ)
0 (ξ̃)X (ℓ) 1

σN
p

N
L(ℓ)N (ℓ)⊤Q̃(ℓ)

0 (ξ̃)X (ℓ)+Irℓ
1

σ2
N N

L(ℓ)N (ℓ)⊤Q̃(ℓ)
0 (ξ̃)N (ℓ)L(ℓ)⊤

X (ℓ)⊤Q̃(ℓ)
0 (ξ̃)X (ℓ) X (ℓ)⊤Q̃(ℓ)

0 (ξ̃)X (ℓ) 1
σN

p
N

X (ℓ)⊤Q̃(ℓ)
0 (ξ̃)N (ℓ)L(ℓ)⊤+Irℓ

= 0.

From the convergence of bilinear forms and the orthonormality of the columns of X (ℓ), we have
X (ℓ)⊤Q̃ (ℓ)

0 (ξ̃)X (ℓ) → mSC(ξ̃)Irℓ almost surely. Moreover, we can see that 1
σN

p
N

L(ℓ)N (ℓ)⊤Q̃ (ℓ)
0 (ξ̃)X (ℓ) van-

ishes almost surely as N →+∞ since ∥L(ℓ)∥ = O (N
d−2

4 ) and ∥N (ℓ)a∥ = O (
p

N ) almost surely16 for all

16This fact is not so easy to see (note that it does not depend on d !). If we naively upper bound ∥N (ℓ)a∥2 by ∥N (ℓ)∥2∥a∥2 =
O (N

d−1
2 ), we do not find the desired upper bound. Instead, we can remark that ∥N (ℓ)a∥2 = a⊤N (ℓ)⊤N (ℓ)a = a⊤V DV ⊤a where

D = Diag(λ1(N (ℓ)⊤N (ℓ)), . . . ,λnℓ (N (ℓ)⊤N (ℓ))) (we assume N large enough so that
∏
ℓ′ ̸=ℓnℓ′ > nℓ thus λi (N (ℓ)⊤N (ℓ)) = 0 for

i > nℓ) and V follows a uniform distribution on the Stiefel manifold Vnℓ (R
∏
ℓ′ ̸=ℓ nℓ′ ) (Chikuse, 2003, Theorem 2.2.1). Therefore
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bounded (sequences of) vectors a ∈ R
∏
ℓ′ ̸=ℓnℓ′ . The only term which remains to evaluate is the block

(2,3):

1

σ2
N N

∥∥∥L(ℓ)N (ℓ)⊤Q̃ (ℓ)
0 (ξ̃)N (ℓ)L(ℓ)⊤

∥∥∥É 1

σN

∥∥H (ℓ)
∥∥2

σN

∥∥∥N (ℓ)
(⊗

ℓ′ ̸=ℓ X (ℓ′)
)∥∥∥2

N

∥∥∥Q̃ (ℓ)
0 (ξ̃)

∥∥∥ a.s.−−−−−→
N→+∞

0.

Eventually, as the determinant is a continuous function in the entries of the matrix, we have, in the
large N limit,

det

 mSC(ξ̃)
σN

H (ℓ)H (ℓ)⊤+ Irℓ
mSC(ξ̃)
σN

H (ℓ)H (ℓ)⊤ 0rℓ×rℓ

0rℓ×rℓ Irℓ 0rℓ×rℓ
mSC(ξ̃)Irℓ mSC(ξ̃)Irℓ Irℓ

= 0.

Using twice the relation det
[

A B
C D

]= det(AD−1 −B D−1C D) when D is invertible, this simplifies into

det

(
mSC(ξ̃)

σN
H (ℓ)H (ℓ)⊤+ Irℓ

)
= 0

Thus, we seek ξ̃(ℓ)
qℓ ∈R\ [−2,2] such that

mSC(ξ̃(ℓ)
qℓ )

σN
s2

qℓ (P (ℓ))+1 = 0, qℓ ∈ [rℓ].

Injecting the expression mSC(ξ̃(ℓ)
qℓ ) =− σN

s2
qℓ

(P (ℓ))
into the equation m2

SC(ξ̃(ℓ)
qℓ )+ ξ̃(ℓ)

qℓ mSC(ξ̃(ℓ)
qℓ )+1 = 0 yields

σ2
N

s4
qℓ (P (ℓ))

− ξ̃(ℓ)
qℓ

σN

s2
qℓ (P (ℓ))

+1 = 0 ⇐⇒ ξ̃(ℓ)
qℓ =

s2
qℓ (P (ℓ))

σN
+ σN

s2
qℓ (P (ℓ))

.

As ξ̃(ℓ)
qℓ > 0 by definition, it must be strictly greater than 2 (the right edge of the semicircle). This is true

only if ρ(ℓ)
qℓ

def= s2
qℓ

(P (ℓ))

σN
> 1.

5.B.3 Eigenvector Alignments

Let û(ℓ)
iℓ

, iℓ ∈ [nℓ], denote the iℓ-th left singular vector of T (ℓ) (sorted in non-increasing order of its

corresponding singular value). From the spectral decomposition T (ℓ)T (ℓ)⊤ = ∑nℓ
iℓ=1 s2

iℓ
(T (ℓ))û(ℓ)

iℓ
û(ℓ)⊤

iℓ
,

we have,

Q̃ (ℓ)(z̃) =
nℓ∑

iℓ=1

û(ℓ)
qℓ û(ℓ)⊤

qℓ

1
σN

[
s2

iℓ
(T (ℓ))−µ(ℓ)

N

]
− z̃

.

If ρ(ℓ)
qℓ > 1, qℓ ∈ [rℓ], then s2

qℓ (T (ℓ)) is an isolated eigenvalue in the spectrum of T (ℓ)T (ℓ)⊤ and
1
σN

[
s2

qℓ (T (ℓ))−µ(ℓ)
N

]
a.s.−−−−−→

N→+∞
ξ̃(ℓ)

qℓ . Hence, for any positively-oriented simple closed complex contour

1
N ∥N (ℓ)a∥2 É (µ(ℓ)

N +2σN )a⊤V V ⊤a. Without loss of generality, we can assume that a = ∥a∥e
(
∏
ℓ′ ̸=ℓ nℓ′ )

1 (replace a and V by Oa

and OV for a well-chosen O ∈O∏
ℓ′ ̸=ℓ nℓ′ (R)). From Mardia and Khatri (1977), we know that [V V ⊤]1,1 follows a beta distribution

with parameters
nℓ
2 ,

∏
ℓ′ ̸=ℓ nℓ′−nℓ

2 so its moments are given by E[[V V ⊤]k
1,1] = ∏k−1

r=0
nℓ+2r∏

ℓ′ ̸=ℓ nℓ′+2r for all k Ê 1. This is enough

to see that (µ(ℓ)
N +2σN )E[[V V ⊤]1,1] = (µ(ℓ)

N +2σN )
nℓ∏

ℓ′ ̸=ℓ nℓ′
= O (1) and (µ(ℓ)

N +2σN )4E[([V V ⊤]1,1 −E[[V V ⊤]1,1])4] = O (N−2),

whence the almost sure statement 1
N ∥N (ℓ)a∥2 =O (1).
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5.B. Proof of Theorem 5.5

γ(ℓ)
qℓ circling around ξ̃(ℓ)

qℓ , leaving all the other ξ̃(ℓ)
q ′
ℓ

, q ′
ℓ
̸= qℓ, outside and not crossing [−2,2], Cauchy’s

integral formula (Proposition 2.15) yields, for N large enough and any a ∈Rnℓ ,〈
a, û(ℓ)

qℓ

〉2
=− 1

2iπ

∮
γ(ℓ)

qℓ

a⊤Q̃ (ℓ)(z̃)a dz̃
a.s.−−−−−→

N→+∞
− 1

2iπ

∮
γ(ℓ)

qℓ

a⊤Q̄ (ℓ)(z̃)a dz̃

by the dominated convergence theorem since, for all z̃ ∈ γ(ℓ)
qℓ , a⊤Q̃ (ℓ)(z̃)a → a⊤Q̄ (ℓ)(z̃)a almost surely

as N →+∞ by definition of the deterministic equivalent (Definition 2.17) and z̃ ∈ γ(ℓ)
qℓ 7→ |a⊤Q̃ (ℓ)(z̃)a|

is almost surely bounded for N large enough because we can choose γ(ℓ)
qℓ such that Dist(ξ̃(ℓ)

qℓ ,γ(ℓ)
qℓ ) Ê ε>

0 and therefore |a⊤Q̃ (ℓ)(z̃)a| É ∥a∥2∥Q̃ (ℓ)(z̃)∥ É ∥a∥2/ε almost surely.
Using residue calculus, we can compute,

− 1

2iπ

∮
γ(ℓ)

qℓ

a⊤Q̄ (ℓ)(z̃)a dz̃ =− lim
z̃→ξ̃(ℓ)

qℓ

(
z̃ − ξ̃(ℓ)

qℓ

)
a⊤

(
1

σN
P (ℓ)P (ℓ)⊤+ 1

mSC(z̃)
Inℓ

)−1

a.

Note that P (ℓ)P (ℓ)⊤ = X (ℓ)H (ℓ)H (ℓ)⊤X (ℓ)⊤ and there exist an rℓ × rℓ orthogonal matrix O(ℓ) ∈ Orℓ (R)
such that H (ℓ)H (ℓ)⊤ =O(ℓ)Λ(ℓ)O(ℓ)⊤ withΛ(ℓ) = Diag(s2

1(P (ℓ)), . . . , s2
rℓ (P (ℓ))). Hence,

a⊤
(

1

σN
P (ℓ)P (ℓ)⊤+ 1

mSC(z̃)
Inℓ

)−1

a = a⊤X (ℓ)O(ℓ)
(

1

σN
Λ(ℓ) + 1

mSC(z̃)
Inℓ

)−1

O(ℓ)⊤X (ℓ)⊤a.

Let us therefore compute the following quantity,

− lim
z̃→ξ̃(ℓ)

qℓ

(
z̃ − ξ̃(ℓ)

qℓ

) s2
q ′
ℓ

(P (ℓ))

σN
+ 1

mSC(z̃)

−1

=
{

0 if q ′
ℓ
̸= qℓ

ζ(ℓ)
qℓ if q ′

ℓ
= qℓ

, q ′
ℓ ∈ [rℓ],

where we have used the fact that mSC(ξ̃(ℓ)
q ′
ℓ

) = − σN

s2
q′
ℓ

(P (ℓ))
. In order to handle the case q ′

ℓ
= qℓ, we use

L’Hôpital’s rule,

ζ(ℓ)
qℓ =−

 d

dz̃

[
s2

qℓ (P (ℓ))

σN
+ 1

mSC(z̃)

]
z̃=ξ̃(ℓ)

qℓ

−1

=
m2

SC(ξ̃(ℓ)
qℓ )

m′
SC(ξ̃(ℓ)

qℓ )

=
σ2

N

s4
qℓ (P (ℓ))m′

SC(ξ̃(ℓ)
qℓ )

.

In order to compute m′
SC(ξ̃(ℓ)

qℓ ), let us differentiate the relation m2
SC(z̃)+ z̃mSC(z̃)+1 = 0,

2m′
SC(z̃)mSC(z̃)+mSC(z̃)+ z̃m′

SC(z̃) = 0,

m′
SC(z̃) =− mSC(z̃)

2mSC(z̃)+ z̃
.

Hence,

m′
SC(ξ̃(ℓ)

qℓ ) =−
− σN

s2
qℓ

(P (ℓ))

−2 σN

s2
qℓ

(P (ℓ))
+ s2

qℓ
(P (ℓ))

σN
+ σN

s2
qℓ

(P (ℓ))
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= 1
s4

qℓ
(P (ℓ))

σ2
N

−1
.

Back to our previous expression of ζ(ℓ)
qℓ , we now have,

ζ(ℓ)
qℓ = 1−

σ2
N

s4
qℓ (P (ℓ))

.

Therefore, for all a ∈Rnℓ ,

− 1

2iπ

∮
γ(ℓ)

qℓ

a⊤Q̄ (ℓ)(z̃)a dz̃ = a⊤X (ℓ)O(ℓ) Z (ℓ)
qℓ O(ℓ)⊤X (ℓ)⊤a

where Z (ℓ)
qℓ is an rℓ× rℓ matrix with all its entries equal to 0 except [Z (ℓ)

qℓ ]qℓ,qℓ = ζ(ℓ)
qℓ . Thus, summing

the alignments of û(ℓ)
qℓ with each column of X (ℓ) yields

∥∥∥X (ℓ)⊤û(ℓ)
qℓ

∥∥∥2 a.s.−−−−−→
N→+∞

ζ(ℓ)
qℓ

rℓ∑
q ′
ℓ
=1

O(ℓ)2
q ′
ℓ

,qℓ
= ζ(ℓ)

qℓ .

5.C Proof of Lemma 5.10

Our proof of Lemma 5.10 uses the notion of ε-covering. An ε-covering of a compact set K for the
norm ∥·∥ is a finite set C ⊂K such that for all x ∈K , there exists x̄ ∈C such that ∥x − x̄∥ É ε. We also
define the covering number N (ε,K ,∥·∥) as the smallest possible number of elements in C .

Moreover, we recall the definition of the Gamma function Γ(s) = ∫ +∞
0 t s−1e−t dt and the (upper)

incomplete Gamma function Γ(s, x) = ∫ +∞
x t s−1e−t dt for s > 0 and x Ê 0.

For our proof, we need to introduce a few preliminary results which are stated and proven below
(except Lemma 5.16 for which a reference is given).

Lemma 5.14. For ℓ ∈ [d ] and ε> 0, let ∆(ℓ) ∈ Rnℓ×rℓ be such that ∥∆(ℓ)∥ É ε and V (ℓ) ∈ Vrℓ (Rnℓ ) be the

matrix of its left singular vectors. For all A(ℓ′) ∈Rnℓ′×rℓ′ , ℓ′ ̸= ℓ,∥∥∥N(A(1), . . . ,∆(ℓ), . . . , A(d))
∥∥∥

F
É ε

∥∥∥N(A(1), . . . ,V (ℓ), . . . , A(d))
∥∥∥

F
.

Proof. Let V (ℓ)Σ(ℓ)W (ℓ)⊤ be the singular value decomposition of∆(ℓ). We have,

∥∥∥N(A(1), . . . ,∆(ℓ), . . . , A(d))
∥∥∥

F
=

∥∥∥∥∥∆(ℓ)⊤N (ℓ)⊠
ℓ′ ̸=ℓ

A(ℓ′)

∥∥∥∥∥
F

=
∥∥∥∥∥W (ℓ)⊤Σ(ℓ)V (ℓ)⊤N (ℓ)⊠

ℓ′ ̸=ℓ
A(ℓ′)

∥∥∥∥∥
F

É
∥∥∥W (ℓ)⊤Σ(ℓ)

∥∥∥︸ ︷︷ ︸
=ε

∥∥∥∥∥V (ℓ)⊤N (ℓ)⊠
ℓ′ ̸=ℓ

A(ℓ′)

∥∥∥∥∥
F︸ ︷︷ ︸

=∥N(A(1),...,V (ℓ),...,A(d))∥F

using the fact that ∥AB∥F É ∥A∥∥B∥F.

Lemma 5.15. Given A(ℓ) ∈Vrℓ (Rnℓ ), ℓ ∈ [d ],

∥∥∥N(A(1), . . . , A(d))
∥∥∥2

F
∼χ2

( ∏
ℓ∈[d ]

rℓ

)
.
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Proof. Firstly, observe that, for all (q1, . . . , qd ) ∈×ℓ∈[d ][rℓ],

[N(A(1), . . . , A(d))]q1,...,qd =
n1,...,nd∑

i1,...,id=1
Ni1,...,id A(1)

i1,q1
. . . A(d)

id ,qd
∼N (0,1)

since
∑nℓ

iℓ=1 A(ℓ)2
iℓ,qℓ

= 1 for all ℓ ∈ [d ]. Then, we show that all the entries of N(A(1), . . . , A(d)) are indepen-

dent because their covariance is identity,

E
[

[N(A(1), . . . , A(d))]q1,...,qd [N(A(1), . . . , A(d))]q ′
1,...,q ′

d

]
=

n1,...,nd∑
i1,...,id=1

n1,...,nd∑
i ′1,...,i ′d=1

E
[
Ni1,...,idNi ′1,...,i ′d

]
A(1)

i1,q1
A(1)

i ′1,q ′
1

. . . A(d)
id ,qd

A(d)
i ′d ,q ′

d

=
n1,...,nd∑

i1,...,id=1
A(1)

i1,q1
A(1)

i1,q ′
1

. . . A(d)
id ,qd

A(d)
id ,q ′

d

=
{

1 if (q1, . . . , qd ) = (q ′
1, . . . , q ′

d )
0 otherwise

.

Hence, the result follows from the fact that ∥N(A(1), . . . , A(d))∥2
F is the sum of

∏
ℓ∈[d ] rℓ squared inde-

pendent N (0,1) variables.

Lemma 5.16 (Hinrichs et al., 2017, Lemma 4.1). For 0 < ε < 1, we have the following upper bound on
the ε-covering number of the Stiefel manifold Vr (Rn) for the spectral norm ∥·∥,

N (ε,Vr (Rn),∥·∥) É
[

C

ε

]r
(
n− r+1

2

)
.

where C > 0 is a universal constant.

Lemma 5.17. Γ(s, x) É max(1,e s−1)Γ(s)e−x/2 for all x Ê 0 and s > 0.

Proof. Given s > 0, consider the function f : x ∈ [0,+∞[ 7→ Γ(s,x)
Ce−x/2 with C > 0. Our goal is to show that

0 < f É 1 when C is well chosen. f is continuously differentiable on [0,+∞[ and

f ′(x) = 1

Ce−x/2

(
−xs−1e−x + 1

2
Γ(s, x)

)
Ê 0 ⇐⇒ Γ(s, x)−2xs−1e−x Ê 0.

Consider the function g : x ∈ [0,+∞[ 7→ Γ(s, x) − 2xs−1e−x . g is also continuously differentiable on
[0,+∞[ and

g ′(x) = xs−1e−x −2(s −1)xs−2e−x Ê 0 ⇐⇒ x Ê 2(s −1).

We distinguish two cases.

1. If 0 < s É 1, then g increases monotonically on [0,+∞[. Since limx→+∞ g (x) = 0, we necessarily
have g (x) É 0 for all x ∈ [0,+∞[. Hence, f (x) É f (0) = Γ(s)

C and we can choose C = Γ(s).

2. If s > 1, our conclusion stems from the following table.

x

g ′(x)

g (x)

0 2(s −1) +∞
− 0 +

Γ(s)Γ(s)

g (2(s −1))g (2(s −1))

00
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Since g is strictly increasing on [2(s −1),+∞[ and limx→+∞ g (x) = 0, we necessarily have
g (2(s −1)) < 0. Hence, since Γ(s) > 0, the equation g (x) = 0 has a unique solution on [0,+∞[
and it lies between 0 and 2(s −1). Let x0(s) ∈ [0,2(s −1)] be this unique solution. Then,

sup
[0,+∞[

f = f (x0(s)) = Γ(s, x0(s))

Ce−x0(s)/2

and we can choose C = Γ(s, x0(s))ex0(s)/2. The final result follows from Γ(s, x0(s)) É Γ(s) and
ex0(s)/2 É e s−1.

We are now ready to prove Lemma 5.10.
Let ε> 0 and Cℓ be an ε-covering of Vrℓ (Rnℓ ) for the spectral norm ∥·∥, ℓ ∈ [d ]. Since×ℓ∈[d ] Vrℓ (Rnℓ )

is compact, it contains an element (A(1)
⋆ , . . . , A(d)

⋆ ) such that

sup
A(ℓ)∈Vrℓ

(Rnℓ ), ℓ∈[d ]

∥∥∥N(A(1), . . . , A(d))
∥∥∥

F
=

∥∥∥N(A(1)
⋆ , . . . , A(d)

⋆ )
∥∥∥

F
.

Let Ā(ℓ) ∈Cℓ be such that A(ℓ)
⋆ = Ā(ℓ)+∆(ℓ) with ∥∆(ℓ)∥ É ε. Then, using the triangle inequality, Lemma

5.14 and the optimality of (A(1)
⋆ , . . . , A(d)

⋆ ), we have,∥∥∥N(Ā(1) +∆(1), . . . , Ā(d) +∆(d))
∥∥∥

F
É

∥∥∥N(Ā(1), . . . , Ā(d))
∥∥∥

F
+S

∥∥∥N(A(1)
⋆ , . . . , A(d)

⋆ )
∥∥∥

F

with S
def= ∑d

k=1

(d
k

)
εk É∑d

k=1 ε
k d k

k ! É eεd −1. Hence, choosing ε= 1
d log 3

2 , we get,∥∥∥N(A(1)
⋆ , . . . , A(d)

⋆ )
∥∥∥

F
É 2

∥∥∥N(Ā(1), . . . , Ā(d))
∥∥∥

F

and, from the union bound, for any t Ê 0,

P
(∥∥∥N(A(1)

⋆ , . . . , A(d)
⋆ )

∥∥∥
F
Ê t

)
ÉP

( ⋃
A(ℓ)∈Cℓ, ℓ∈[d ]

{∥∥∥N(A(1), . . . , A(d))
∥∥∥

F
Ê t

2

})

É
∑

A(ℓ)∈Cℓ, ℓ∈[d ]

P

(∥∥∥N(A(1), . . . , A(d))
∥∥∥

F
Ê t

2

)
.

Thus, combining Lemma 5.15 and 5.16, we have,

P
(∥∥∥N(A(1)

⋆ , . . . , A(d)
⋆ )

∥∥∥
F
Ê t

)
É

[
C d

log 3
2

]∑d
ℓ=1 rℓ

(
nℓ−

rℓ+1
2

)
P

(
X Ê t 2

4

)
where X is a random variable following a χ2(

∏
ℓ∈[d ] rℓ) distribution. Eventually, the probability on the

right-hand side can be bounded using Lemma 5.17,

P

(
X Ê t 2

4

)
=
Γ
(

1
2

∏
ℓ∈[d ] rℓ, t 2

8

)
Γ
( 1

2

∏
ℓ∈[d ] rℓ

) É max(1,e
1
2

∏
ℓ∈[d ] rℓ−1)e−t 2/16.

We get the result stated in Lemma 5.10 with

t 2 = 16

[(
d∑
ℓ=1

rℓ

(
nℓ−

rℓ+1

2

))
log

C d

log 3
2

+ log

(
1

δ
max

(
1,e

1
2

∏d
ℓ=1 rℓ−1

))]
.
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5.D Proof of Theorem 5.11

Recall the decomposition P= �H; X (1), . . . , X (d)�. We use the following lemma whenever we state that
∥P(U (1), . . . ,U (d))∥F =O (∥P∥F) as N →+∞.

Lemma 5.18. For all (A(1), . . . , A(d)) ∈×ℓ∈[d ] Vrℓ (Rnℓ ),∥∥∥P(A(1), . . . , A(d))
∥∥∥

F
É ∥P∥F

∏
ℓ∈[d ]

∥∥∥X (ℓ)⊤A(ℓ)
∥∥∥.

Proof. The proof relies on the property ∥AB∥F É ∥A∥∥B∥F.

∥∥∥P(A(1), . . . , A(d))
∥∥∥

F
=

∥∥∥∥∥A(1)⊤X (1)H (1)
d

⊠
ℓ=2

X (ℓ)⊤A(ℓ)

∥∥∥∥∥
F

É
∥∥A(1)⊤X (1)∥∥∥∥∥∥∥H (1)

d

⊠
ℓ=2

X (ℓ)⊤A(ℓ)

∥∥∥∥∥
F

=
∥∥A(1)⊤X (1)∥∥∥∥∥∥∥A(2)⊤X (2)H (2)

(
Ir1 ⊠

d

⊠
ℓ=3

X (ℓ)⊤A(ℓ)

)∥∥∥∥∥
F

É
∥∥A(1)⊤X (1)∥∥∥∥A(2)⊤X (2)∥∥∥∥∥∥∥H (2)

(
Ir1 ⊠

d

⊠
ℓ=3

X (ℓ)⊤A(ℓ)

)∥∥∥∥∥
F

. . .

É
(

d∏
ℓ=1

∥∥∥A(ℓ)⊤X (ℓ)
∥∥∥)∥∥∥∥∥H (d)

d

⊠
ℓ=1

Irℓ

∥∥∥∥∥
F︸ ︷︷ ︸

=∥H∥F=∥P∥F

.

Given ℓ ∈ [d ], U (ℓ)
1 gathers the rℓ dominant left singular vectors of T (ℓ)⊠ℓ′ ̸=ℓU (ℓ′)

0 , i.e., it is solution
to

max
U (ℓ)∈Vrℓ

(Rnℓ )

∥∥∥∥∥U (ℓ)⊤T (ℓ)⊠
ℓ′ ̸=ℓ

U (ℓ′)
0

∥∥∥∥∥
2

F

. (5.19)

Consider also a solution Ũ (ℓ)
1 to the following related problem

max
U (ℓ)∈Vrℓ

(Rnℓ )

∥∥∥∥∥U (ℓ)⊤P (ℓ)⊠
ℓ′ ̸=ℓ

U (ℓ′)
0

∥∥∥∥∥
2

F

. (5.20)

Observe that, using the property ∥AB∥F É ∥A∥∥B∥F, we have,∥∥∥∥∥U (ℓ)⊤P (ℓ)⊠
ℓ′ ̸=ℓ

U (ℓ′)
0

∥∥∥∥∥
2

F

=
∥∥∥∥∥U (ℓ)⊤X (ℓ)H (ℓ)⊠

ℓ′ ̸=ℓ
X (ℓ′)⊤U (ℓ′)

0

∥∥∥∥∥
2

F

É
∥∥∥U (ℓ)⊤X (ℓ)

∥∥∥2
∥∥∥∥∥H (ℓ)⊠

ℓ′ ̸=ℓ
X (ℓ′)⊤U (ℓ′)

0

∥∥∥∥∥
2

F

É
∥∥∥∥∥H (ℓ)⊠

ℓ′ ̸=ℓ
X (ℓ′)⊤U (ℓ′)

0

∥∥∥∥∥
2

F

and this upper bound is only reached with U (ℓ) = X (ℓ)O(ℓ), for any rℓ × rℓ orthogonal matrix O(ℓ).
Hence, Ũ (ℓ)

1 = X (ℓ)O(ℓ). The strategy of our proof is to show that, as N →+∞, Problem (5.19) has the
same solutions as Problem (5.20), which are known.
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With the decomposition T =P+ 1p
N
N, we have,

∥∥∥∥∥U (ℓ)⊤T (ℓ)⊠
ℓ′ ̸=ℓ

U (ℓ′)
0

∥∥∥∥∥
2

F

=
∥∥∥∥∥U (ℓ)⊤P (ℓ)⊠

ℓ′ ̸=ℓ
U (ℓ′)

0

∥∥∥∥∥
2

F

+ 1

N

∥∥∥∥∥U (ℓ)⊤N (ℓ)⊠
ℓ′ ̸=ℓ

U (ℓ′)
0

∥∥∥∥∥
2

F

+ 2p
N

〈
U (ℓ)⊤P (ℓ)⊠

ℓ′ ̸=ℓ
U (ℓ′)

0 ,U (ℓ)⊤N (ℓ)⊠
ℓ′ ̸=ℓ

U (ℓ′)
0

〉
F

.

From Lemma 5.10, 1
N ∥U (ℓ)⊤N (ℓ)⊠ℓ′ ̸=ℓU (ℓ′)

0 ∥2
F =O (1) almost surely and

2p
N

∣∣∣∣∣
〈

U (ℓ)⊤P (ℓ)⊠
ℓ′ ̸=ℓ

U (ℓ′)
0 ,U (ℓ)⊤N (ℓ)⊠

ℓ′ ̸=ℓ
U (ℓ′)

0

〉
F

∣∣∣∣∣
É 2p

N

∥∥∥∥∥U (ℓ)⊤P (ℓ)⊠
ℓ′ ̸=ℓ

U (ℓ′)
0

∥∥∥∥∥
F︸ ︷︷ ︸

=O (∥P∥F)

∥∥∥∥∥U (ℓ)⊤N (ℓ)⊠
ℓ′ ̸=ℓ

U (ℓ′)
0

∥∥∥∥∥
F︸ ︷︷ ︸

=O (
p

N )

.

Therefore, for all U (ℓ) ∈Vrℓ (Rnℓ ),∥∥∥∥∥U (ℓ)⊤T (ℓ)⊠
ℓ′ ̸=ℓ

U (ℓ′)
0

∥∥∥∥∥
2

F

=
∥∥∥∥∥U (ℓ)⊤P (ℓ)⊠

ℓ′ ̸=ℓ
U (ℓ′)

0

∥∥∥∥∥
2

F

+O (∥P∥F) almost surely. (5.21)

In particular,∥∥∥∥∥U (ℓ)⊤
1 T (ℓ)⊠

ℓ′ ̸=ℓ
U (ℓ′)

0

∥∥∥∥∥
2

F

=
∥∥∥∥∥U (ℓ)⊤

1 P (ℓ)⊠
ℓ′ ̸=ℓ

U (ℓ′)
0

∥∥∥∥∥
2

F

+O (∥P∥F) almost surely,

∥∥∥∥∥U (ℓ)⊤
1 T (ℓ)⊠

ℓ′ ̸=ℓ
U (ℓ′)

0

∥∥∥∥∥
2

F

=
∥∥∥∥∥Ũ (ℓ)⊤

1 P (ℓ)⊠
ℓ′ ̸=ℓ

U (ℓ′)
0

∥∥∥∥∥
2

F

+O (∥P∥F) almost surely,

where the first equation is simply Equation (5.21) with U (ℓ) = U (ℓ)
1 and the second equation stems

from the maximum over U (ℓ) ∈Vrℓ (Rnℓ ) of both sides of Equation (5.21)17. Hence,∥∥∥∥∥U (ℓ)⊤
1 P (ℓ)⊠

ℓ′ ̸=ℓ
U (ℓ′)

0

∥∥∥∥∥
2

F

=
∥∥∥∥∥Ũ (ℓ)⊤

1 P (ℓ)⊠
ℓ′ ̸=ℓ

U (ℓ′)
0

∥∥∥∥∥
2

F

+O (∥P∥F) almost surely. (5.22)

Then, consider the singular value decomposition X (ℓ)⊤U (ℓ)
1 =∑rℓ

qℓ=1 s(ℓ)
qℓ v (ℓ)

qℓ w (ℓ)⊤
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qℓ H (ℓ)⊠
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X (ℓ′)⊤U (ℓ′)

0

∥∥∥∥∥
2

F

17max{∥U (ℓ)⊤T (ℓ)⊠ℓ′ ̸=ℓU (ℓ′)
0 ∥2

F} É max{∥U (ℓ)⊤P (ℓ)⊠ℓ′ ̸=ℓU (ℓ′)
0 ∥2

F}+max{O (∥P∥F)} where each max is over U (ℓ) ∈Vrℓ (Rnℓ ).

Thus, ∥U (ℓ)⊤
1 T (ℓ)⊠ℓ′ ̸=ℓU (ℓ′)

0 ∥2
F −∥Ũ (ℓ)⊤

1 P (ℓ)⊠ℓ′ ̸=ℓU (ℓ′)
0 ∥2

F =O (∥P∥F) almost surely.
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=
rℓ∑
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0
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2
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.

Therefore, because ∥H (ℓ)⊠ℓ′ ̸=ℓ X (ℓ′)⊤U (ℓ′)
0 ∥2

F = ∥Ũ (ℓ)⊤
1 P (ℓ)⊠ℓ′ ̸=ℓU (ℓ′)

0 ∥2
F, Equation (5.22) yields,
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Using the decomposition v (ℓ)
qℓ =∑rℓ

q ′
ℓ
=1

[v (ℓ)
qℓ ]q ′

ℓ
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, we can see that
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Hence,
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which is the result stated in Theorem 5.11:
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1

∥∥∥2
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= 1

rℓ

rℓ∑
qℓ=1

s(ℓ)2
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(
∥P∥F

L2
N
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almost surely.
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Chapter 6

Performance Gaps in Multi-View
Clustering under the Nested
Matrix-Tensor Model

IN the age of artificial intelligence, handling vast amounts of data has become a fundamental as-
pect of machine learning tasks. Datasets are often high-dimensional and composed of multiple

modes, such as various modalities, sensors, sources, types, or domains, naturally leading themselves
to be represented as tensors. Tensors offer a richer structure compared to traditional one-dimensional
vectors and two-dimensional matrices, making them increasingly relevant in various applications, in-
cluding statistical learning and data analysis (Landsberg, 2011; Sun et al., 2021).

Yet, in the existing literature, there is a notable scarcity of theoretical studies that specifically ad-
dress the performance gaps between tensor-based methods and traditional (matrix) spectral meth-
ods in the context of high-dimensional data analysis. While tensor methods have shown promise in
various applications, including multi-view clustering, co-clustering, community detection, and latent
variable modeling (Wu et al., 2019; Anandkumar et al., 2014; Papalexakis et al., 2013; Wang et al., 2023),
little attention has been devoted to rigorously quantifying the advantages and drawbacks of leveraging
the hidden low-rank tensor structure. Filling this gap by conducting a thorough theoretical analysis
is crucial for gaining a deeper understanding of the practical implications and potential performance
gains associated with tensor-based techniques.

In the specific case of multi-view clustering, Seddik et al. (2023a) recently proposed a spectral
tensor method and carried out a precise analysis of its performance in the large-dimensional limit.
Their method consists in computing a best rank-one (tensor) approximation of a nested matrix-tensor
model, which, in particular, generalizes the classical rank-one spiked tensor model of Montanari and
Richard (2014), and can be described as follows. Assume that we observe m transformations of a p×n
matrix M =µy⊤+N representing n points in dimension p split into two clusters centered around ±µ,
with y ∈ {−1,+1}n and N a Gaussian matrix encoding the “inherent” dispersion of individuals (that is,
regardless of measurement errors) around the center of their respective cluster. Mathematically, each
view is thus expressed as

Xk = fk (µy⊤+N )+Wk , k = 1, . . . ,m, (6.1)

where fk models the transformation applied to M on the k-th view and Wk is an additive observation
noise with i.i.d. entries drawn from N (0,1). The nested-matrix tensor model then arises when we
take fk (M) = hk M , meaning the function fk simply rescales the matrix M by an unknown coefficient
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hk ∈R. With h = (
h1 . . . hm

)⊤ ∈Rm and ⊗ denoting the outer product, this gives

X= (
µy⊤+N

)⊗h +W ∈Rp×n×m . (6.2)

By seeking a best rank-one approximation of X to estimate its latent clustering structure, Seddik
et al. (2023a) showed empirically that it outperforms an unfolding approach based on applying an
SVD to an unfolding of X (as in Ben Arous et al. (2023) and Chapter 5), which is a matrix obtained by
rearranging the entries of a tensor (see Section 2.4). However, the tensor-based approach hinges upon
solving a problem which is worst-case NP-hard, unlike the unfolding approach. A natural question is
thus: what is the exact performance gap that exists between these two approaches, as a function of
some measure of difficulty of the problem (typically, a measure of signal-to-noise ratio)?

Here, in order to answer this question, we rigorously study the unfolding method by deploying
tools from random matrix theory. Specifically, our main contributions are

• within the framework of the general nested matrix-tensor model, we derive the limiting spectral
distribution of the unfoldings of the tensor (Theorems 6.1 and 6.5) and precisely quantify how
well the hidden low-rank (tensor) structure can be recovered from them in the high-dimensional
regime (Theorems 6.2 and 6.7);

• we perform a similar random matrix analysis of the model when the vector spanning the third
mode is known (Theorems 6.9 and 6.10), providing an optimal upper bound on the recovery
performance;

• in the context of multi-view clustering, we compare the performance of the tensor and unfold-
ing approaches to the optimal one and specify the gap between them thanks to our theoretical
findings (Theorem 6.11), supported by empirical results1.

Although the above described model arises from a rather particular choice of view transformations
fk , it is amenable to a precise estimation performance analysis, either by means of a tensor spectral
estimator as recently done by Seddik et al. (2023a), or via a matrix spectral estimator as we consider
in the present chapter. Moreover, from a broader perspective (that is, beyond the multi-view cluster-
ing problem considered here), this model can be viewed as a more flexible version of the rank-one
spiked model, incorporating a nested structure that allows for versatile data modeling, deviating from
a pure rank-one assumption. A common low-rank structure encoding the underlying latent cluster-
ing pattern is shared by all slices Xk , which represent distinct views of the data. In particular, when
the variances of the elements in N approach zero, the rank-one spiked model is retrieved. Hence, we
believe that the nested tensor-matrix model (and extensions) can be a useful tool in other contexts in
the broader area of statistical learning.

Related work. In the machine learning literature, the notion of “view” is fairly general and models
data whose form may differ but all represent the same object seen from different (and complemen-
tary) angles (for instance, multiple descriptors of an image, translations of a text or features of a web-
page such as its hyperlinks, text and images). Various approaches have been considered to address
multi-view clustering problems. For instance, Nie et al. (2016, 2017b,a) consider a graph-based model
and construct a similarity matrix by integrating all views with a weighted sum before applying spectral
clustering. Other approaches, relying upon a space-learning-based model (Wang et al., 2017; Zhang
et al., 2017; Wang et al., 2019; Peng et al., 2019), reconstruct the data in an ideal space where cluster-
ing is easy. Zhang et al. (2019) suggest a method which is more suitable for large datasets by mixing

1Note that these numerical results are only meant to illustrate our theoretical findings, showing their implications in practice.
However, our work does not purport to explain the performance gap between any tensor-based and any matrix-based multi-
view clustering methods.
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binary coding and clustering. Tensor methods have also been considered: Wu et al. (2019) propose an
essential tensor learning approach for Markov chain-based multi-view spectral clustering. Further-
more, Liu et al. (2021, 2023) design simple yet effective methods for multi-view clustering relying on
multiple kernel k-means. Our work differs from these previous contributions in that it is focused on a
tensor model having the specific form of Model (6.2). Even though this model corresponds to a rather
particular case of the general setting given in Equation (6.1), our results represent a first step towards
precisely understanding how tensor methods can contribute to addressing the latter.

Regarding the analysis of performance gaps between tensor- and matrix-based methods, we can
mention the recent work by Seddik et al. (2023b), where the authors proposed a data model that
consists of a Gaussian mixture assuming a low-rank tensor structure on the population means and
further characterized the theoretical performance gap between a simple tensor-based method and a
flattening-based method that neglects the low-rank structure. Their study has demonstrated that the
tensor approach yields provably better performance compared to treating the data as mere vectors.

Proofs and simulations. All proofs are deferred to the appendix. Python codes to reproduce simu-
lations are available in the following GitHub repository https://github.com/HugoLebeau/nested
_matrix-tensor.

6.1 Random Matrix Analysis of the Nested Matrix-Tensor Model

Before presenting its practical applications in Section 6.2, we define the nested matrix-tensor model
in a general framework. Consider the following statistical model,

T =βT M ⊗ z + 1p
nT

W ∈Rn1×n2×n3 , M =βM x y⊤+ 1p
nM

N ∈Rn1×n2 , (6.3)

where nM = n1 +n2 and nT = n1 +n2 +n3, x , y and z are of unit norm and the entries of W and N

are independent Gaussian random variables2: Wi , j ,k
i.i.d.∼ N (0,1), Ni , j

i.i.d.∼ N (0,1). M is a rank-1 signal
βM x y⊤ corrupted by noise N , modeling the data matrix, whereasT models its multi-view observation
βT M ⊗ z corrupted by noise W. The positive parameters βM and βT control the signal-to-noise ratio
(SNR). Our interest is the statistical recovery of x , y or z in the regime where n1,n2,n3 → +∞ with

0 < cℓ
def= nℓ/nT < 1 for all ℓ ∈ [3]. This models the fact that, in practice, we deal with large tensors

whose dimensions have comparable sizes.
Seddik et al. (2023a) have studied the spectral estimator of x , y and z based on computing the best

rank-one approximation of T, that is, by solving

(x⋆, y⋆, z⋆) = argmax
(u,v ,w )∈Sn1−1×Sn2−1×Sn3−1

〈T,u ⊗v ⊗w〉.

Concretely, they used random matrix tools to assess its performance in the recovery of x , y and z ,
by deploying a recent approach developed by Goulart et al. (2022); Seddik et al. (2022). In this work,
we study instead the performance of a spectral approach based on computing the dominant singular
vectors of the (matrix) unfoldings of T, aiming to precisely quantify the performance gap between
these different approaches.

Because M has the structure of a standard spiked matrix model (Benaych-Georges and Nadakuditi,
2011; Couillet and Liao, 2022) with a rank-one perturbation βM x y⊤ of a random matrix 1p

nm
N , we

shall assume βM = Θ(1) since we know that it is in this “non-trivial regime” that the recovery of x
or y given M is neither too easy (too high SNR) nor too hard (too small SNR) and a phase-transition

2See our discussion on the Gaussian noise assumption in Section 2.2.3.
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phenomenon (Baik et al., 2005) between impossible and possible recovery can be observed. However,
we shall see that the algorithmic phase transition related to the unfolding approach takes place when
βT =Θ(n1/4

T ) in lieu of βT =Θ(1). This is different from the tensor spectral approach for which both
βM and βT are Θ(1) in the non-trivial regime, supposing a better performance of the latter method,
although, practically, no known algorithm is able to compute it below βT = Θ(n1/4

T ) (Montanari and
Richard, 2014).

6.1.1 Unfoldings Along the First Two Modes

We start by studying the recovery of y (resp. x) from the unfolding T (2) (resp. T (1)). In a multi-view
clustering perspective — which motivates our work and which will be developed in Section 6.2 — we
are especially interested in the recovery of y since it carries the class labels. Therefore, we present our
results for T (2) only. As x and y play a symmetric role, it is easy to deduce the results for T (1) from
those presented below. The recovery of z from T (3) is dealt with in Section 6.1.2.

Following the model presented in Equation (6.3), the unfolding along the second mode of T de-
velops as

T (2) =βTβM y(x ⊠ z)⊤+ βTp
nM

N⊤(
In1 ⊠ z

)⊤+ 1p
nT

W (2). (6.4)

Hence, a natural estimator ŷ of y is the dominant left singular vector of T (2) or, equivalently, the dom-
inant eigenvector of T (2)T (2)⊤. The latter being symmetric, it is better suited to the tools presented
in Chapter 2. Our first step is to characterize the limiting spectral distribution of this random matrix.
However, similarly to the model studied in Chapter 5, one must be careful with the fact that the di-
mensions of T (2) ∈ Rn2×n1n3 do not have sizes of the same order, causing the spectrum of T (2)T (2)⊤

to diverge as n1,n2,n3 → +∞. In fact, its eigenvalues gather in a “bulk” centered around a Θ(nT )
value and spread on an interval of size Θ(

p
nT ) — a phenomenon which was first characterized by

Ben Arous et al. (2023). For this reason, in Theorem 6.1, we do not specify the LSD of T (2)T (2)⊤ per
se but of a properly centered-and-scaled version of it, whose spectrum no longer diverges. Moreover,
it is expected that the rank-one signal βTβM y(x ⊠ z)⊤ causes the presence of an isolated eigenvalue
in the spectrum of T (2)T (2)⊤ with corresponding eigenvector positively correlated with y when it is
detectable, i.e., when βTβM is large enough.

Our second step is thus to precisely specify what is meant by “large enough” and characterize the
asymptotic position of this spike eigenvalue and the alignment with y of its corresponding eigenvec-
tor. It turns out that the signal vanishes if βT does not scale with nT . Precisely, β2

T nT /
p

n1n2n3 must
converge to a fixed positive quantity, denoted ρT , to reach the “non-trivial regime” — that is, one
where the signal and the noise in the model have comparable strengths. However, because the noise
in N is also weighted by βT , this affects the shape of the bulk. Hence, the value of ρT influences the
limiting spectral distribution of T (2)T (2)⊤ and shall appear in its defining equation3. Having said all
this, we are now ready to introduce the following theorem.

Theorem 6.1 (Limiting Spectral Distribution). As n1,n2,n3 → +∞, the centered-and-scaled matrix
nTp

n1n2n3
T (2)T (2)⊤ − n1n3p

n1n2n3
In2 has a limiting spectral distribution ν̃ whose Stieltjes transform m̃ sat-

isfies
ρT c2

1− c3
m̃3(s̃)+

(
1+ s̃

ρT c2

1− c3

)
m̃2(s̃)+

(
s̃ + ρT (c2 − c1)

1− c3

)
m̃(s̃)+1 = 0, s̃ ∈C\ Supp ν̃

where ρT = β2
T nTp

n1n2n3
. Moreover, if βM = 0 (no signal), no eigenvalue stays outside Supp ν̃ almost surely

as n1,n2,n3 →+∞.

3This may be at first surprising because ρT relates to the strength of the signal while the LSD stems from the noise. We see
that N plays an ambivalent role of both a signal and a noise term.
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Figure 6.1: Empirical Spectral Distribution (ESD) and Limiting Spectral Distribution (LSD) of
T (2)T (2)⊤ (left) and T (3)T (3)⊤ (right) with n1 = 600, n2 = 400 and n3 = 200. Both spectra show an
isolated eigenvalue close to its predicted asymptotic position, represented by the green dashed line.
Left: ρT = 2, βM = 1.5. The centered-and-scaled LSD ν̃ and spike location ξ̃ are defined in Theorems
6.1 and 6.2. Right: ϱ = 4, βM = 3. The LSD is a shifted-and-rescaled semicircle distribution and the
normalized spike location is ϱ+ 1

ϱ as precised in Theorems 6.5 and 6.7.

Proof. See Appendix 6.A.

As mentioned in Section 2.1, the LSD ν̃ is characterized by its Stieltjes transform, uniquely defined
as the solution of a polynomial equation4. The influence of ρT on the LSD of T (2)T (2)⊤ is made explicit
in this equation and it is interesting to remark that, if ρT = 0 (i.e., in the absence of signal), this equality
reduces to m̃2(s̃)+ s̃m̃(s̃)+1 = 0, which is a well-known characterization of the Stieltjes transform of
the semicircle distribution (Equation (2.1)). Note also that the condition ρT =Θ(1) amounts to saying
that βT = Θ(n1/4

T ), which coincides with the conjectured “computational threshold” under which no
known algorithm is able to detect a signal without prior information (Montanari and Richard, 2014;
Ben Arous et al., 2023).

The ESD and LSD of T (2)T (2)⊤ with parameters (ρT ,βM ) = (2,1.5) are represented in the left panel
of Figure 6.1. We observe a good agreement between the actual and predicted shape of the bulk. As
expected, we see an isolated eigenvalue on the right which only appears for sufficiently high values of
ρT and βM . The following theorem specifies this behavior and quantifies the alignment between the
signal y and the spike eigenvector ŷ = u1(T (2)T (2)⊤).

Theorem 6.2 (Spike Behavior).

Let ξ̃= ρT

β2
M

(
c1

1− c3
+β2

M

)(
c2

1− c3
+β2

M

)
+ 1

ρT

(
c2

1−c3
+β2

M

)
and ζ= 1− 1

β2
M

(
c2

1−c3
+β2

M

)
 β2

M

ρT

(
c2

1−c3
+β2

M

)
2

+ c2

1− c3

(
c1

1− c3
+β2

M

).

If ζ> 0, then the centered-and-scaled matrix nTp
n1n2n3

T (2)T (2)⊤− n1n3p
n1n2n3

In2 has an isolated eigenvalue

asymptotically located in ξ̃ almost surely. Furthermore, in this case, the alignment between the corre-
sponding eigenvector ŷ = u1(T (2)T (2)⊤) and the true signal y converges to ζ almost surely, i.e.,〈

y , ŷ
〉2 a.s.−−−−−−−−−−→

n1,n2,n3→+∞ ζ.

4Although this is not the only solution to this equation, it is the only one that has the properties of a Stieltjes transform, such
as ℑ[s̃]ℑ[m̃(s̃)] > 0 for all s̃ ∈C\R (see Proposition 2.7).
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Figure 6.2: Asymptotic alignment [ζ]+ = max(ζ,0) between the signal y and the dominant eigenvector
of T (2)T (2)⊤, as defined in Theorem 6.2, with c1 = 1

2 , c2 = 1
3 and c3 = 1

6 . The curve ζ= 0 is the position
of the phase transition between the impossible detectability of the signal (below) and the presence
of an isolated eigenvalue in the spectrum of T (2)T (2)⊤ with corresponding eigenvector correlated with
the signal (above). It has an asymptote βM = ( c1c2

1−c3
)1/4 as ρT → +∞, represented by the red dashed

line.

Proof. See Appendix 6.B.

Naturally, we must assume ρT ,βM > 0 for ξ̃ and ζ to be well defined. The location of the isolated
eigenvalue in the spectrum of T (2)T (2)⊤ predicted from the expression of ξ̃ is represented as the green
dashed line in the left panel of Figure 6.1. In fact, Theorem 6.2 reveals a phase transition phenomenon
between impossible and possible recovery of the signal with the estimator ŷ = u1(T (2)T (2)⊤). This is
precisely quantified by the value of [ζ]+ = max(ζ,0): the closer it is to 1, the better is the estimation of
y . The precise dependence of ζ on ρT and βM is hard to interpret directly from its expression. Figure
6.2 displays [ζ]+ as a function of ρT and βM . The expression of the curve ζ= 0 marking the position of
the transition from impossible to possible recovery is given by the following proposition.

Proposition 6.3 (Phase Transition). If β4
M > c1c2

1−c3
, then ζ= 0 ⇐⇒ ρT =

β2
M(

c2
1−c3

+β2
M

)√
β4

M − c1c2
1−c3

.

We see that, if β4
M É c1c2

1−c3
, it is impossible to find ρT > 0 such that ζ> 0. This is due to the fact that

β4
M = c1c2

1−c3
corresponds to the position of the phase transition in the estimation of y from M . If the

signal is not detectable from M , there is obviously no chance to recover it from T. Moreover, as ρT

grows, the value of βM such that ζ= 0 coincides with ( c1c2
1−c3

)1/4 but it goes to +∞ as ρT approaches 0.

This shows the importance of having βT =Θ(n1/4
T ) (in which case it is more convenient to work with

the rescaled version ρT of βT ): if βT is an order below (ρT → 0) then we are stuck in the “Impossible
recovery” zone while if βT is an order above (ρT →+∞) then estimating from T is just like estimating
from M . It is precisely in the regime βT = Θ(n1/4

T ) that this phase-transition phenomenon can be
observed, thereby justifying its designation as “non-trivial”.

Remark 6.4. It should be noted that the aforementioned impossibility of (partially) recovering the
sought signal in a given regime refers only to the case where such a recovery is carried out by the
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6.1. Random Matrix Analysis of the Nested Matrix-Tensor Model

unfolding method. In other words, our discussion concerns algorithmic thresholds pertaining to such
method, and not statistical ones.

6.1.2 Unfolding Along the Third Mode

For the sake of completeness, we study in this section the recovery of z from the third unfolding of T.
Following the model in Equation (6.3), the expression of T (3) is

T (3) =βT zm⊤+ 1p
nT

W (3) (6.5)

where m = [
M1,· . . . Mn1,·

]⊤ ∈Rn1n2 .
This unfolding has the peculiarity that the rank-one perturbation βT zm⊤ mixes signal (the vector

z) and noise (contained in M). Still, as for the previous unfoldings, the dominant left singular vector of
T (3) remains a natural estimator of z and we study the asymptotic spectral properties of T (3)T (3)⊤. Be-
cause of the long shape of T (3) (one dimension grows faster than the other), the spectrum of T (3)T (3)⊤

diverges in the same way as that of T (2)T (2)⊤. Therefore, we must proceed to a similar rescaling. The
following theorem states that, after proper rescaling, the distribution of eigenvalues of T (3)T (3)⊤ ap-
proaches the semicircle distribution.

Theorem 6.5 (Limiting Spectral Distribution). As n1,n2,n3 →+∞, the empirical spectral distribution
of the centered-and-scaled matrix nTp

n1n2n3
T (3)T (3)⊤− n1n2p

n1n2n3
In3 converges weakly to the semicircle dis-

tribution on [−2,2] given by

dµSC(x) = 1

2π

√[
4−x2

]+dx.

Moreover, if βT = 0 (no signal), no eigenvalue stays outside [−2,2] almost surely as n1,n2,n3 →+∞.

Proof. See Appendix 6.C.

The ESD and LSD of T (3)T (3)⊤ are plotted in the right panel of Figure 6.1. The result of Theorem 6.5
is not surprising: the “non-trivial” shape of the LSD of T (2)T (2)⊤ (Theorem 6.1) is due to the presence of

a “signal-noise” βTp
nM

N⊤(
In1 ⊠ z

)⊤ in the expression of T (2) but, when βT is set to 0, we have observed

that the LSD of T (2)T (2)⊤ is simply a semicircle. This is coherent with the case that interests us here: in
T (3), the “signal-noise” is restrained to the rank-one perturbation and therefore does not impact the
LSD of T (3)T (3)⊤, which is then a semicircle.

Because of the rank-one perturbation βT zm⊤, the spectrum of T (3)T (3)⊤ exhibits an isolated
eigenvalue which can be observed in the right panel of Figure 6.1. Our next step is to characterize
the behavior of this spike eigenvalue and the correlation with z of its corresponding eigenvector. Be-
fore introducing the formal result in Theorem 6.7, let us have a close look at the expression of T (3)T (3)⊤

to understand, with hand-waving arguments, what should be the non-trivial regime in this case.

T (3)T (3)⊤ =β2
T ∥M∥2

Fz z⊤+ βTp
nT

(
zm⊤W (3)⊤+W (3)mz⊤)+ 1

nT
W (3)W (3)⊤

Starting from the right, the term 1
nT

W (3)W (3)⊤ is already understood thanks to Theorem 6.5 and yields
a semicircle as limiting spectral distribution. The crossed-terms in the middle have zero mean and
are expected to vanish. On the left, remains the rank-one term z z⊤ weighted by β2

T ∥M∥2
F, which is

a random quantity because of the noise N in M . However, the quantity ∥M∥2
F is expected to rapidly

concentrate around its mean n1n2
nM

+β2
M . Hence, guessing from the results on the previous unfoldings,

we would need the quantity β2
T

nTp
n1n2n3

(
n1n2
nM

+β2
M

)
to converge to a fixed positive value denoted ϱ.
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Indeed, this is precisely what is found when this analysis is rigorously carried out (see Appendix 6.C),
meaning that βT = Θ(n−1/4

T ). In other words, if βT is a constant (βT = Θ(1)), we are above the non-
trivial regime and therefore should expect (asymptotically) exact recovery. This is because the strength
of the signal is “boosted” by ∥M∥2

F =Θ(nT ).

Remark 6.6. ϱ is defined as the value of β2
T

nTp
n1n2n3

(
n1n2
nM

+β2
M

)
which, since βM = Θ(1), is the same

as that of β2
T

n1n2
nM

nTp
n1n2n3

. However, we keep the β2
M term in the definition of ϱ as it yields better

predictions in our simulations.

Theorem 6.7 (Spike Behavior). If ϱ
def= β2

T nTp
n1n2n3

(
n1n2
nM

+β2
M

)
> 1, then the centered-and-scaled matrix

nTp
n1n2n3

T (3)T (3)⊤− n1n2p
n1n2n3

In3 has an isolated eigenvalue asymptotically located in ϱ+ 1
ϱ almost surely.

Furthermore, in this case, the alignment between the corresponding eigenvector ẑ = u1(T (3)T (3)⊤) and
the true signal z converges to 1− 1

ϱ2 almost surely, i.e.,

〈z , ẑ〉2 a.s.−−−−−−−−−−→
n1,n2,n3→+∞ 1− 1

ϱ2 .

Proof. See Appendix 6.D.

Once the quantity ϱ is defined, we recognize in Theorem 6.7 the same results as that of the spiked
Wigner model (Section 2.2.1).

Remark 6.8. In practice, we work with large but finite tensors. Hence, it makes no sense to say that
βT =Θ(n1/4

T ) or βT =Θ(n−1/4
T ). In fact, the characterization of the “non-trivial” regime is only impor-

tant here to reveal the relevant quantities, i.e., ρT andϱ, which we will use in practice without worrying
on whether βT is in the right regime or not.

6.1.3 Estimation with Weighted Mean

Before diving into the application of the previous results to multi-view clustering (where we will be
interested in the estimation of the class labels contained in y), we propose an analysis of a related
matrix model corresponding to the optimal estimation of y when z is perfectly known. These results
will give us an optimistic upper bound on the performance of the estimation of y from T.

In case z is known, y can be estimated with the following weighted mean of T along mode 3,

T̄ =
n3∑

k=1
zkT ·,·,k =βTβM x y⊤+ ςp

nM
Z (6.6)

where Zi , j
i.i.d.∼ N (0,1) and ς2 = β2

T + nM
nT

. It is well known that the dominant right singular vector of

T̄ is an optimal estimator of y under this model (Onatski et al., 2013; Löffler et al., 2021). Hence, we
study the spectrum of 1

ς2 T̄ ⊤T̄ , which is a sample covariance matrix — a standard model in random

matrix theory (Pastur and Shcherbina, 2011; Bai and Silverstein, 2010). Its eigenvalue distribution con-
verges to the Marčenko-Pastur distribution (Marčenko and Pastur, 1967), as expressed in the following
theorem.

Theorem 6.9 (Limiting Spectral Distribution). Let E± =
(√

c1
1−c3

±
√

c2
1−c3

)2
. As n1,n2 →+∞, the matrix

1
ς2 T̄ ⊤T̄ has a limiting spectral distribution [1− c1

c2
]δ0 +η with η explicitly given by

dη(x) = 1

2π c2
1−c3

x

√
[x −E−]+[E+−x]+dx.
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Similarly to the previous spiked models, the rank-one informationβTβM x y⊤ induces the presence
of an isolated eigenvalue in the spectrum of 1

ς2 T̄ ⊤T̄ . The following theorem characterize its behavior

and that of its corresponding eigenvector.

Theorem 6.10 (Spike Behavior). If
(
βTβM
ς

)4
> c1c2

(1−c3)2 , then the spectrum of 1
ς2 T̄ ⊤T̄ exhibits an isolated

eigenvalue asymptotically located in ς2

β2
Tβ

2
M

(
β2

Tβ
2
M

ς2 + c1
1−c3

)(
β2

Tβ
2
M

ς2 + c2
1−c3

)
almost surely. Moreover, in this

case, the corresponding eigenvector u1(T̄ ⊤T̄ ) is aligned with the signal y ,

〈
y ,u1(T̄ ⊤T̄ )

〉2 a.s.−−−−−−−−−−→
n1,n2,n3→+∞ 1− ς2

β2
Tβ

2
M

c2

1− c3

β2
Tβ

2
M

ς2 + c1
1−c3

β2
Tβ

2
M

ς2 + c2
1−c3

.

These results follow from the “standard” signal-plus-noise model presented in Section 2.2.3.

6.2 Performance Gaps in Multi-View Clustering

We shall now illustrate our results in the context of multi-view clustering. As explained in the in-
troduction, we consider the observation of a tensor X ∈ Rp×n×m following the nested matrix-tensor
model,

X= (
µȳ⊤+N

)⊗h +W with

 Ni , j
i.i.d.∼ N

(
0, 1

p+n

)
Wi , j ,k

i.i.d.∼ N
(
0, 1

p+n+m

) . (6.7)

The two cluster centers are ±µ and ȳi =± 1p
n

depending on the class of the i -th individual. The third

vector h encodes the variances along the different views of µȳ⊤+N . The clustering is performed by
estimating the class labels with the dominant left singular vector ŷ of X (2). It is thus a direct application
of the results of Section 6.1.1, where (∥µ∥,∥h∥) plays the role of (βM ,βT ). In fact, the behavior of the
alignment 〈y , ŷ〉2 given by Theorem 6.2 can be further precised with the following theorem.

Theorem 6.11 (Performance of Multi-View Spectral Clustering).

Let (cp ,cn ,cm) = (p,n,m)

p +n +m
, ρ = ∥h∥2 p +n +mp

pnm
,

and ζ= 1− 1∥∥µ∥∥2
(

cn
1−cm

+
∥∥µ∥∥2

)
 ∥∥µ∥∥2

ρ
(

cn
1−cm

+
∥∥µ∥∥2

)
2

+ cn

1− cm

(
cp

1− cm
+

∥∥µ∥∥2
).

Then,
√

n
1−ζ (ŷ j −

√
ζȳ j )

D−−−−−→
n→+∞ N (0,1) for all j ∈ [n], i.e., ŷ j approximately follows N

(√
ζȳ j , 1−ζ

n

)
.

Therefore, the clustering accuracy of the estimator ŷ converges almost surely to Φ
(√

ζ
1−ζ

)
where Φ : x 7→

1p
2π

∫ x
−∞ e−

t2
2 dt is the standard Gaussian cumulative distribution function.

Proof. The proof is similar to that of Theorem 3.4 given in Chapter 3.

Figure 6.3 compares the performances of the unfolding approach predicted by Theorem 6.11 with
that of the “tensor approach” (Seddik et al., 2023a) which performs clustering with a rank-one approx-
imation of X. Moreover, an optimistic upper bound on the best achievable performance, given by
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Figure 6.3: Empirical versus theoretical multi-view clustering performance with parameters
(p,n,m) = (150,300,60), varying ∥µ∥ and two values of ∥h∥ : 0.5 in blue and 1.5 in orange. The solid
curve (O) is an optimistic upper bound given by Theorem 6.10, as it can be reached when the vari-
ances along each view are perfectly known. The dash-dotted curve (T) is the performance achieved
with a rank-one approximation of X (Seddik et al., 2023a). The dashed curve (U) is the performance
predicted by Theorem 6.11 with the unfolding approach.

the solid curve, can be derived from Theorem 6.10. Empirical accuracies are computed for both ap-
proaches and show a good match between theory and simulation results. It appears that the unfolding
approach has a later phase transition and a lower performance than the tensor approach. This was
expected since they do not have the same non-trivial regime (Θ(n1/4

T ) against Θ(1)). As ∥h∥ increases,
the performance gap between both approaches reduces. The performance of the tensor approach
rapidly comes very close to the upper bound: the two curves almost coincide for ∥h∥ = 1.5.

These results show the superiority of the tensor approach in terms of accuracy of the multi-view
spectral clustering. In particular, by contrast with the unfolding-based estimator, the tensor approach
has near-optimal performance, as quantified by Theorem 6.10. Nevertheless, when considering “not
too hard” problems (i.e., for which ∥µ∥ and ∥h∥ are not too close to the phase transition threshold), the
performances of both methods are close and the unfolding approach may be more interesting given
its ease of implementation and lower computational cost.

6.3 Conclusion and Perspectives

In the context of multi-view clustering, we have conducted a thorough random matrix analysis of the
unfoldings of a newly-introduced nested matrix-tensor model, which is an extension of the classical
rank-one spiked tensor model. Our results shed light on the behavior of the distribution of the sin-
gular values of the unfolding in the large-dimensional regime. Moreover, we have characterized the
alignments of their dominant eigenvectors with the sought signal, thereby describing the frontier be-
tween possible and impossible recovery in the corresponding non-trivial regime. In a previous work,
Seddik et al. (2023a) studied the recovery performance of the best rank-one approximation on the
same model and showed empirically that it performs better than the unfolding approach. Our analy-
sis completes the picture by studying the performance of the latter. A natural avenue to delve deeper
into this analysis of multi-view clustering is to extend our results to more general view functions fk .
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6.3. Conclusion and Perspectives

From a theoretical standpoint, we have shown the superiority of the tensor approach in terms of
signal recovery. In particular, the latter can, in principle, recover the signal at aΘ(1) signal-to-noise ra-
tio, while the matrix approach needs this ratio to diverge as n1/4

T as shown in Theorem 6.2, consistently
with our results from Chapter 5. However, the tensor approach is based on an NP-hard formation and
it is conjectured that no polynomial-time algorithm is capable of succeeding at aΘ(1) signal-to-noise
ratio. In practice, for a sufficiently large ratio, one may combine these approaches by initializing a ten-
sor rank-one approximation algorithm (such as HOOI in Algorithm 5) with the estimate given by the
unfolding method. Although this procedure allows to compute the best rank-one approximation and
therefore reach the optimal performance, it is only efficient above the computational threshold (The-
orem 5.11). Therefore, the results illustrated in Figure 6.3 are indicative of the existing computational-
to-statistical gap. The “tensor approach” consists in computing the best rank-one approximation of
the observed tensor as estimator of the sought signal. Although, this is not always feasible because of
the practical limitations we have just mentioned, the analysis of this problem provides many insight
into the statistical limits of the estimation.
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6.A Proof of Theorem 6.1

Denote Q (2)(s) = (
T (2)T (2)⊤− sIn2

)−1
the resolvent of T (2)T (2)⊤ defined for all s ∈C\ SpT (2)T (2)⊤.

6.A.1 Computations with Stein’s Lemma

Before delving into the analysis of Q (2), we will derive a few useful results thanks to Stein’s lemma
(Lemma 2.18). They are gathered in the following Proposition 6.12.

Proposition 6.12.

E
[
W (2)T (2)⊤Q (2)]= n1n3p

nT
E
[
Q (2)]− 1p

nT
E
[
(n2 +1)Q (2) + s

(
Q (2) TrQ (2) +Q (2)2)], (6.8)

βT E
[

M⊤(
In1 ⊠ z

)⊤T (2)⊤Q (2)
]
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T E
[

M⊤MQ (2)]
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nT
E
[
sQ (2) TrQ (2) + sQ (2)2 + In2 TrQ (2) +Q (2)]

+ 1

n2
T

E
[
(n1n3 −n2 −2)Q (2) TrQ (2) + (n1n3 −n2 −4)Q (2)2]

− s

n2
T

E[4Q (2)3 +2Q (2)2 TrQ (2) +Q (2) Tr2 Q (2) +Q (2) TrQ (2)2],

(6.9)

E
[

N⊤MQ (2)]= 1p
nM

E

[
(n1 −n2 −1)Q (2) −

(
s − n1n3

nT

)(
Q (2) TrQ (2) +Q (2)2)]

− s
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p

nM
E
[
4Q (2)3 +2Q (2)2 TrQ (2) +Q (2) TrQ (2)2 +Q (2) Tr2 Q (2)]

− 1

nT
p

nM
E
[
(n2 +2)Q (2) TrQ (2) + (n2 +4)Q (2)2],

(6.10)

E
[

y x⊤NQ (2)]=− βTp
nM

E
[

y(x ⊠ z)⊤T (2)⊤(
Q (2) TrQ (2) +Q (2)2)]. (6.11)

In order to prove these results, we will need the following expressions for the derivatives of Q (2).

Proposition 6.13.

∂Q(2)
a,b

∂W (2)
c,d

=− 1p
nT

(
Q(2)

a,c

[
T (2)⊤Q (2)]

d ,b +Q(2)
c,b

[
T (2)⊤Q (2)]

d ,a

)
(6.12)

∂Q(2)
a,b

∂Nc,d
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nM

(
Q(2)

a,d

[
Q (2)T (2)(In1 ⊠ z

)]
b,c +Q(2)

d ,b

[
Q (2)T (2)(In1 ⊠ z

)]
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)
(6.13)

Proof. Since ∂Q (2) =−Q (2)∂
(
T (2)T (2)⊤)

Q (2),

∂Q(2)
a,b

∂Wi , j ,k
=−
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e=1
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g=1
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h=1

Q(2)
a,e

(
∂T f ,e,g
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)
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h,b
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∂Q(2)
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(
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[
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)
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Likewise,

∂Q(2)
a,b

∂Nc,d
=−
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∂T f ,e,g
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)
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a,d zgTc,h,g Q(2)
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Q(2)
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)
∂Q(2)

a,b
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(
Q(2)

a,d

[
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)]
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[
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)]
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)
.

The identities in Proposition 6.12 are proved using Stein’s lemma (Lemma 2.18) and Proposition
6.13.

Proof of Equation (6.8)

E
[
W (2)T (2)⊤Q (2)]

i , j =
n1n3∑
k=1

n2∑
l=1
E
[

W (2)
i ,k T (2)

l ,k Q(2)
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]

=
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 ∂T (2)
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i , j −
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where the last equality comes from T (2)T (2)⊤Q (2) = In2 + sQ (2).

Proof of Equation (6.9)

E
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M⊤MQ (2)]
i , j +

1p
nT

n1n3∑
k=1

n2∑
l=1
E

[
M⊤(

In1 ⊠ z
)⊤]

i ,k
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.
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We have T (2) =βT M⊤(In1 ⊠ z)⊤+ 1p
nM

W (2) and T (2)T (2)⊤Q (2) = sQ (2) + In2 thus

βT E
[

M⊤(
In1 ⊠ z

)⊤T (2)⊤Q (2)
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Q (2) TrQ (2) +Q (2)2)]
=β2

T E
[
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[
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p
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[
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We use Stein’s lemma (Lemma 2.18) again to handle the last term.
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And, again, with T (2)T (2)⊤Q (2) = sQ (2) + In2 , we obtain

E
[
W (2)T (2)⊤(

Q (2) TrQ (2) +Q (2)2)]
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Eventually, this gives,
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Proof of Equation (6.10)
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where we have used Stein’s lemma (Lemma 2.18) again. Hence,
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Proof of Equation (6.11)
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6.A.2 Asymptotic Behavior of the Resolvent

Since Q (2)−1Q (2) = In2 , we have T (2)T (2)⊤Q (2) − sQ (2) = In2 . Hence, using Equation (6.4) and taking the
expectation,

βT E
[

M⊤(
In1 ⊠ z

)⊤T (2)⊤Q (2)
]
+ 1p

nT
E
[
W (2)T (2)⊤Q (2)]− sE

[
Q (2)]= In2

and, injecting Equation (6.8), this yields

βT E
[

M⊤(
In1 ⊠ z

)⊤T (2)⊤Q (2)
]

+ n1n3

nT
E
[
Q (2)]− 1

nT
E
[
(n2 +1)Q (2) + s

(
Q (2) TrQ (2) +Q (2)2)]− sE

[
Q (2)]= In2 .

Then, we use Equation (6.9) to develop βT E[M⊤(
In1 ⊠ z

)⊤T (2)⊤Q (2)]. After rearranging the terms and
using the decomposition M =βM x y⊤+ 1p

nM
N , we find

s

nT
E
[
Q (2) TrQ (2)]+(

s + n2 −n1n3

nT

)
E
[
Q (2)]+ In2

=− 1

nT
E
[
Q (2) + sQ (2)2]+β2

TβME
[

y x⊤MQ (2)]+ β2
Tp

nM
E
[

N⊤MQ (2)]
− 1

nT
E
[
sQ (2) TrQ (2) + sQ (2)2 + In2 TrQ (2) +Q (2)]

+ 1

n2
T

E
[
(n1n3 −n2 −2)Q (2) TrQ (2) + (n1n3 −n2 −4)Q (2)2]

− s

n2
T

E[4Q (2)3 +2Q (2)2 TrQ (2) +Q (2) Tr2 Q (2) +Q (2) TrQ (2)2].
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We can now use Equation (6.10) to develop E[N⊤MQ (2)].

s

nT
E
[
Q (2) TrQ (2)]+(

s + n2 −n1n3

nT

)
E
[
Q (2)]+ In2

=− 1

nT
E
[
Q (2) + sQ (2)2]+β2

TβME
[

y x⊤MQ (2)]
+
β2

T

nM
E

[
(n1 −n2 −1)Q (2) −

(
s − n1n3

nT

)(
Q (2) TrQ (2) +Q (2)2)]

− s
β2

T

nT nM
E
[
4Q (2)3 +2Q (2)2 TrQ (2) +Q (2) TrQ (2)2 +Q (2) Tr2 Q (2)]

−
β2

T

nT nM
E
[
(n2 +2)Q (2) TrQ (2) + (n2 +4)Q (2)2]

− 1

nT
E
[
sQ (2) TrQ (2) + sQ (2)2 + In2 TrQ (2) +Q (2)]

+ 1

n2
T

E
[
(n1n3 −n2 −2)Q (2) TrQ (2) + (n1n3 −n2 −4)Q (2)2]

− s

n2
T

E[4Q (2)3 +2Q (2)2 TrQ (2) +Q (2) Tr2 Q (2) +Q (2) TrQ (2)2].

After a few rearrangements this becomes(
s − n1n3 −n2 −2

nT
−
β2

T

nM
(n1 −n2 −1)

)
E
[
Q (2)]+(

1

nT
E
[
TrQ (2)]+1

)
In2

+
(

s

(
β2

T

nM
+ 2

nT

)
− n1n3 −n2 −2

nT

(
β2

T

nM
+ 1

nT

))
E
[
Q (2) TrQ (2)]

+
(

s

(
β2

T

nM
+ 2

nT

)
− n1n3 −n2 −4

nT

(
β2

T

nM
+ 1

nT

))
E
[
Q (2)2]

+ s

nT

(
β2

T

nM
+ 1

nT

)
E
[
4Q (2)3 +2Q (2)2 TrQ (2) +Q (2) TrQ (2)2 +Q (2) Tr2 Q (2)]=β2

TβME
[

y x⊤MQ (2)].

Here, we must be careful that, due to the n2×n1n3 rectangular shape of T (2), the spectrum of T (2)T (2)⊤

diverges in the limit n1,n2,n3 → +∞. In order to bypass this obstacle, we shall perform a change

of variable (s,Q (2)) æ (s̃,Q̃ (2)). Let s̃ = nT s−n1n3p
n1n2n3

and Q̃ (2)(s̃) =
(

nT T (2)T (2)⊤−n1n3 In2p
n1n2n3

− s̃In2

)−1

. With this

rescaling, note that we have Q (2)(s) = nTp
n1n2n3

Q̃ (2)(s̃), and the previous equation becomes

(
s̃ + n2 +2p

n1n2n3
−ρT

n1 −n2 −1

nM

)
E
[
Q̃ (2)]+(

1p
n1n2n3

E
[
TrQ̃ (2)]+1

)
In2

+
(

s̃

(
ρT

nM
+ 2p

n1n2n3

)
+ 1

n2
+ n2 +2p

n1n2n3

(
ρT

nM
+ 1p

n1n2n3

))
E
[
Q̃ (2) TrQ̃ (2)]

+
(

s̃

(
ρT

nM
+ 2p

n1n2n3

)
+ 1

n2
+ n2 +4p

n1n2n3

(
ρT

nM
+ 1p

n1n2n3

))
E
[
Q̃ (2)2]

+
(

s̃p
n1n2n3

+ 1

n2

)(
ρT

nM
+ 1p

n1n2n3

)
E
[
4Q̃ (2)3 +2Q̃ (2)2 TrQ̃ (2) +Q̃ (2) TrQ̃ (2)2 +Q̃ (2) Tr2 Q̃ (2)]

= ρTβME
[

y x⊤MQ̃ (2)]
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where we have introduced the O (1) quantity ρT = β2
T nTp

n1n2n3
.

Remark 6.14. We see, here, that ρT must be bounded to avoid any diverging coefficient in the previous
equation. In fact, we must chose βT =Θ(n1/4

T ) (implying ρT =Θ(1)) in order to place ourselves in the
non-trivial regime where both the noise and the signal are Θ(1). This is different from the estimation
of y with a rank-one approximation of T, where βT could be kept Θ(1) (Seddik et al., 2023a) (but at
the cost of an NP-hard computation (Hillar and Lim, 2013)).

Let us reformulate the previous equation by keeping only the non-vanishing terms on the left-
hand side of the equal sign.

ρT
n2

nM
E

[
Q̃ (2)

(
TrQ̃ (2)

n2

)2]
+

(
1+ s̃ρT

n2

nM

)
E

[
Q̃ (2) TrQ̃ (2)

n2

]
+

(
s̃ +ρT

n2 −n1

nM

)
E
[
Q̃ (2)]+ In2

=−
(

n2 +2p
n1n2n3

+ ρT

nM

)
E
[
Q̃ (2)]− n2p

n1n2n3
E

[
TrQ̃ (2)

n2

]
In2

−
(

s̃
2n2p

n1n2n3
+ n2 +2p

n1n2n3

(
ρT

n2

nM
+ n2p

n1n2n3

))
E

[
Q̃ (2) TrQ̃ (2)

n2

]

− n2p
n1n2n3

(
1+ s̃

(
ρT

n2

nM
+ n2p

n1n2n3

))
E

[
Q̃ (2)

(
TrQ̃ (2)

n2

)2]

−
(

s̃

(
ρT

nM
+ 2p

n1n2n3

)
+ 1

n2
+ n2 +4p

n1n2n3

(
ρT

nM
+ 1p

n1n2n3

))
E
[
Q̃ (2)2]

−4

(
s̃p

n1n2n3
+ 1

n2

)(
ρT

nM
+ 1p

n1n2n3

)
E
[
Q̃ (2)3]

−
(

s̃
n2p

n1n2n3
+1

)(
ρT

nM
+ 1p

n1n2n3

)
E

[
2Q̃ (2)2 TrQ̃ (2)

n2
+Q̃ (2) TrQ̃ (2)2

n2

]
+ρTβME

[
y x⊤MQ̃ (2)]. (6.14)

6.A.3 Concentration of Bilinear Forms and Traces

We have the following concentration results

a⊤(
Q̃ (2) −E[Q̃ (2)])b

a.s.−−−−−−−−−−→
n1,n2,n3→+∞ 0 and

1

n2
Tr A

(
Q̃ (2) −E[Q̃ (2)]) a.s.−−−−−−−−−−→

n1,n2,n3→+∞ 0 (6.15)

for all bounded (sequences of) vectors a,b ∈Rn2 and matrices A ∈Rn2×n2 .
The proof relies on the use of the Poincaré-Nash inequality (Lemma 2.19) and Lemma 2.20. Be-

cause of the “double-noise” structure of our model, the computations can be quite cumbersome but
present no conceptual difficulty compared to those performed similarly in Section 2.3.1 so we just give
the main steps.

Recall that we assume βT =Θ(n−1/4
T ) in the non-trivial regime.

For bilinear forms, we find

Var
(
a⊤Q̃ (2)b

)É 4n2
T

n1n2n3

(
β2

T

nM
+ 1

nT

)
∥a∥2∥b∥2E

[∥∥T (2)∥∥2∥∥Q̃ (2)∥∥4
]
=O s̃ (n−1/2

T ), (6.16)

E
[∣∣a⊤(

Q̃ (2) −E[Q̃ (2)])b
∣∣4

]
É

16n2
T

n1n2n3

(
β2

T

nM
+ 1

nT

)
∥a∥2∥b∥2E

[∣∣a⊤(
Q̃ (2) −E[Q̃ (2)])b

∣∣2∥∥T (2)∥∥2∥∥Q̃ (2)∥∥4
]
+Var

(
a⊤Q̃ (2)b

)2

=O s̃ (n−1
T ),
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E
[∣∣a⊤(

Q̃ (2) −E[Q̃ (2)])b
∣∣6

]
É

36n2
T

n1n2n3

(
β2

T

nM
+ 1

nT

)
∥a∥2∥b∥2E

[∣∣a⊤(
Q̃ (2) −E[Q̃ (2)])b

∣∣4∥∥T (2)∥∥2∥∥Q̃ (2)∥∥4
]
+E

[∣∣a⊤(
Q̃ (2) −E[Q̃ (2)])b

∣∣4
]2

=O s̃ (n−3/2
T ).

For traces, we find

Var

(
1

n2
Tr AQ̃ (2)

)
É 4

n2

n2
T

n1n2n3

(
β2

T

nM
+ 1

nT

)
∥A∥2E

[∥∥T (2)∥∥2∥∥Q̃ (2)∥∥4
]
=O s̃ (n−3/2

T ). (6.17)

We also note here two results which are not needed for the concentration (6.15) but will be useful
below and are derived with the Poincaré-Nash inequality (Lemma 2.19) as well.

Var

(
1

n2
TrQ̃ (2)2

)
É 16

n2

n2
T

n1n2n3

(
β2

T

nM
+ 1

nT

)
E
[∥∥T (2)∥∥2∥∥Q̃ (2)∥∥6

]
=O s̃ (n−3/2

T ), (6.18)

Var

([
1

n2
TrQ̃ (2)

]2)
É 16

n2

n2
T

n1n2n3

(
β2

T

nM
+ 1

nT

)
E

[∣∣∣∣TrQ̃ (2)

n2

∣∣∣∣2∥∥T (2)∥∥2∥∥Q̃ (2)∥∥4
]
=O s̃ (n−3/2

T ). (6.19)

6.A.4 Expansion of the Mean Empirical Stieltjes Transform

Let Q̃ (2)
0 denote the resolvent of the model withβM = 0 (no signal). Using the resolvent identity (Propo-

sition 2.21), it is easy to see that 1
n2

Tr(Q̃ (2)
0 − Q̃ (2)) = O s̃ (n−1

T ), which shows that the rank-one signal

does not change the limiting spectral distribution of nTp
n1n2n3

[
T (2)T (2)⊤− n1n3

nT
In2

]
and we can assume

βM = 0 from now on.

Define m̃n2 (s̃)
def= 1

n2
TrQ̃ (2)(s̃). We seek an explicit expansion of E[m̃n2 (s̃)] up to a term dominated

by n−1
T . Let us apply 1

n2
Tr to Equation (6.14) and keep explicitly only the terms which are not domi-

nated by n−1
T .

ρT
n2

nM
E
[
m̃3

n2
(s̃)

]+(
1+ s̃ρT

n2

nM

)
E
[
m̃2

n2
(s̃)

]+(
s̃ +ρT

n2 −n1

nM

)
E
[
m̃n2 (s̃)

]+1

=−
(

2n2p
n1n2n3

+ ρT

nM

)
E
[
m̃n2 (s̃)

]− n2p
n1n2n3

(
2s̃ + n2p

n1n2n3
+ρT

n2

nM

)
E
[
m̃2

n2
(s̃)

]
− n2p

n1n2n3

(
1+ s̃

(
ρT

n2

nM
+ n2p

n1n2n3

))
E
[
m̃3

n2
(s̃)

]
−

(
s̃
ρT

nM
+ 1

n2

)
E
[
m̃′

n2
(s̃)

]−3
ρT

nM
E
[
m̃′

n2
(s̃)m̃n2 (s̃)

]+O s̃ (n−3/2
T ) (6.20)

where the derivative of m̃n2 appeared because 1
n2

TrQ̃ (2)2 = m̃′
n2

(s̃). From Equations (6.17), (6.18) and
(6.19) together with the Cauchy-Schwarz inequality, we have

E
[
m̃′

n2
(s̃)m̃n2 (s̃)

]= E[m̃′
n2

(s̃)
]
E
[
m̃n2 (s̃)

]+Cov(m̃′
n2

(s̃),m̃n2 (s̃)) = E[m̃′
n2

(s̃)]E
[
m̃n2 (s̃)

]+O s̃ (n−3/2
T ),

E
[
m̃2

n2
(s̃)

]= E[m̃n2 (s̃)
]2 +Var(m̃n2 (s̃)) = E[m̃n2 (s̃)

]2 +O s̃ (n−3/2
T ),

E
[
m̃3

n2
(s̃)

]= E[m̃n2 (s̃)
]3 +E[m̃n2 (s̃)

]
Var(m̃n2 (s̃))+Cov(m̃2

n2
(s̃),m̃n2 (s̃)) = E[m̃n2 (s̃)

]3 +O s̃ (n−3/2
T ).

Hence, Equation (6.20) becomes
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ρT
n2

nM
E
[
m̃n2 (s̃)

]3 +
(
1+ s̃ρT

n2

nM

)
E
[
m̃n2 (s̃)

]2 +
(

s̃ +ρT
n2 −n1

nM

)
E
[
m̃n2 (s̃)

]+1

=−
(

2n2p
n1n2n3

+ ρT

nM

)
E
[
m̃n2 (s̃)

]− n2p
n1n2n3

(
2s̃ + n2p

n1n2n3
+ρT

n2

nM

)
E
[
m̃n2 (s̃)

]2

− n2p
n1n2n3

(
1+ s̃

(
ρT

n2

nM
+ n2p

n1n2n3

))
E
[
m̃n2 (s̃)

]3

−
(

s̃
ρT

nM
+ 1

n2

)
E
[
m̃′

n2
(s̃)

]−3
ρT

nM
E
[
m̃′

n2
(s̃)

]
E
[
m̃n2 (s̃)

]+O s̃ (n−3/2
T ).

Consider the equation ρT
n2
nM

m̃3(s̃)+ (1+ s̃ρT
n2
nM

)m̃2(s̃)+ (s̃ +ρT
n2−n1

nM
)m̃(s̃)+1 = 0. By expliciting the

roots of this polynomial in m̃(s̃), one can show that, for all s̃ ∈ C \R it has a unique solution satisfying
the properties of a Stieltjes transform (in particular, ℑ[s̃]ℑ[m̃(s̃)] > 0). Moreover, we define in this way
the Stieltjes transform of a compactly supported probability distribution on R, which we denote ν̃. Let
us now subtract the relation ρT

n2
nM

m̃3(s̃)+(1+ s̃ρT
n2
nM

)m̃2(s̃)+(s̃+ρT
n2−n1

nM
)m̃(s̃)+1 = 0 to our previous

equation in E[m̃n2 (s̃)]. With the relations a3−b3 = (a−b)(a2+ab+b2) and a2−b2 = (a−b)(a+b), we
find

(
E
[
m̃n2 (s̃)

]−m̃(s̃)
)[
ρT

n2

nM

(
E
[
m̃n2 (s̃)

]2 +E[m̃n2 (s̃)
]
m̃(s̃)+m̃2(s̃)

)
+

(
1+ s̃ρT

n2

nM

)(
E
[
m̃n2 (s̃)

]+m̃(s̃)
)+ s̃ +ρT

n2 −n1

nM

]
=−

(
2n2p

n1n2n3
+ ρT

nM

)
E
[
m̃n2 (s̃)

]− n2p
n1n2n3

(
2s̃ + n2p

n1n2n3
+ρT

n2

nM

)
E
[
m̃n2 (s̃)

]2

− n2p
n1n2n3

(
1+ s̃

(
ρT

n2

nM
+ n2p

n1n2n3

))
E
[
m̃n2 (s̃)

]3

−
(

s̃
ρT

nM
+ 1

n2

)
E
[
m̃′

n2
(s̃)

]−3
ρT

nM
E
[
m̃′

n2
(s̃)

]
E
[
m̃n2 (s̃)

]+O s̃ (n−3/2
T ). (6.21)

Let us define gn2 (s̃)
def= −1

ρT
n2

nM

(
E[m̃n2 (s̃)]2+E[m̃n2 (s̃)]m̃(s̃)+m̃2(s̃)

)+(
1+s̃ρT

n2
nM

)(
E[m̃n2 (s̃)]+m̃(s̃)

)+s̃+ρT
n2−n1

nM

as well as

∆n2 (s̃)
def= E[m̃n2 (s̃)] − m̃(s̃). Then, simply replacing E[m̃n2 (s̃)] by m̃(s̃) +∆n2 (s̃) in the expression of

gn2 (s̃), we obtain

gn2 (s̃) = −
[

3ρT
n2

nM
m̃2(s̃)+2

(
1+ s̃ρT

n2

nM

)
m̃(s̃)+ s̃ +ρT

n2 −n1

nM

+ρT
n2

nM

(
3m̃(s̃)∆(2)

n2
(s̃)+∆(2)2

n2
(s̃)

)+(
1+ s̃ρT

n2

nM

)
∆(2)

n2
(s̃)

]−1

= g (s̃)× 1

1− g (s̃)∆(2)
n2

(s̃)
(
ρT

n2
nM

(
3m̃(s̃)+∆(2)

n2
(s̃)+ s̃

)
+1

) (6.22)

where g (s̃)
def= −1

3ρT
n2

nM
m̃2(s̃)+2

(
1+s̃ρT

n2
nM

)
m̃(s̃)+s̃+ρT

n2−n1
nM

and, differentiating the relation verified by m̃ with

respect to the complex variable s̃, we can also remark that g (s̃) = m̃′(s̃)
m̃(s̃)+ρT

n2
nM

m̃2(s̃)
. Here, we want to

prove that g (s̃) = O s̃ (1), that is, there exist two polynomials P,Q with positive coefficients such that

g (s̃) É P (|s̃|)
|ℑs̃|Q(|ℑs̃|) . In fact, in Lemma 6.15 below, we show a slightly stronger result which will also be

useful later.

Lemma 6.15. There exists a constant C0 > 0 such that, |g (s̃)| É max(2|s̃|,C0)
Dist(s̃,Supp ν̃)2 for all s̃ ∈C\ Supp ν̃.
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Proof. g (s̃) = m̃′(s̃)
m̃(s̃)+ρT

n2
nM

m̃2(s̃)
and we know that |m̃′(s̃)| É Dist(s̃,Supp ν̃)−2 (from the properties of

Stieltjes transforms, see Proposition 2.7) so the only difficulty is in bounding |m̃(s̃) + ρT
n2
nM

m̃2(s̃)|
from below. Since m̃(s̃) = ∫

R
dν̃(t )
t−s̃ where ν̃ is a compactly supported probability distribution on R,

we have |s̃(m̃(s̃) + ρT
n2
nM

m̃2(s̃))| → 1 as |s̃| → +∞. Hence, there exists a constant M > 0 such that

|s̃| Ê M =⇒ 1
2|s̃| É |m̃(s̃)+ρT

n2
nM

m̃2(s̃)| É 3
2|s̃| . Conversely, s̃ 7→ m̃(s̃)+ρT

n2
nM

m̃2(s̃) never equals 0 on
{z ∈C\Supp ν̃ | |z| É M } and has a non-zero limit as s̃ approaches Supp ν̃with |s̃| É M (these statements
are not straightforward but can be verified trough a study of the function x 7→ m̃(x) onR\Supp ν̃, which
requires to derive an explicit expression of m̃ from the cubic equation it satisfies) therefore there exists
a constant C0 > 0 such that |m̃(s̃)+ρT

n2
nM

m̃2(s̃)| Ê 1
C0

for all s̃ ∈C\Supp ν̃ such that |s̃| É M . In the end,

we have |g (s̃)| É 2|s̃|
Dist(s̃,Supp ν̃)2 if |s̃| Ê M and |g (s̃)| É C0

Dist(s̃,Supp ν̃)2 otherwise.

From Equations (6.21) and (6.22), we have

∆n2 (s̃)

(
1− g (s̃)∆(2)

n2
(s̃)

(
ρT

n2

nM

(
3m̃(s̃)+∆(2)

n2
(s̃)+ s̃

)+1

))
= g (s̃)×O s̃ (n−1/2

T )

thus, since |m̃(s̃)| É |ℑs̃|−1 and g (s̃) = O s̃ (1) by Lemma 6.15, this implies that ∆n2 (s̃) = O s̃ (n−1/2
T ). We

can then use this relation in Equation (6.22) and find that gn2 (s̃) = g (s̃)+O s̃ (n−1/2
T ).

Remark 6.16. ∆n2 (s̃) =O s̃ (n−1/2
T ) shows that E[m̃n2 (s̃)] converges to m̃(s̃) for all s̃ ∈C \R and therefore

that ν̃ is the limiting spectral distribution of nTp
n1n2n3

[
T (2)T (2)⊤− n1n3

nT
In2

]
.

In Equation (6.21) there are also E[m̃′
n2

(s̃)] appearing in the last line. To handle these expecta-

tions, consider the relation obtained after applying 1
n2

Tr to Equation (6.14) and differentiate it with
respect to the complex variable s̃ (differentiation under E is possible because the integrand can be
upper bounded on every compact subset of C\R), this yields(

3ρT
n2

nM
E
[
m̃n2 (s̃)

]2 +2

(
1+ s̃ρT

n2

nM

)
E
[
m̃n2 (s̃)

]+ s̃ +ρT
n2 −n1

nM

)
E
[
m̃′

n2
(s̃)

]
=−

(
E
[
m̃n2 (s̃)

]+ρT
n2

nM
E
[
m̃n2 (s̃)

]2
)
+O s̃ (n−1/2

T )

where we have also used the relations

E
[
m̃2

n2
(s̃)

]= E[m̃n2 (s̃)
]2 +O s̃ (n−3/2

T ), E
[
m̃′

n2
(s̃)m̃n2 (s̃)

]= E[m̃′
n2

(s̃)
]
E
[
m̃n2 (s̃)

]+O s̃ (n−3/2
T )

and E
[
m̃′

n2
(s̃)m̃2

n2
(s̃)

]= E[m̃′
n2

(s̃)
]
E
[
m̃2

n2
(s̃)

]+O s̃ (n−3/2
T ).

Hence, since E[m̃n2 (s̃)] = m̃(s̃)+O (n−1/2
T ), we find that

E
[
m̃′

n2
(s̃)

]= gn2 (s̃)

(
m̃(s̃)+ρT

n2

nM
m̃2(s̃)

)
+O s̃ (n−1/2

T )

and Equation (6.21) becomes

E
[
m̃n2 (s̃)

]= m̃(s̃)+
(

2n2p
n1n2n3

+ ρT

nM

)
gn2 (s̃)E

[
m̃n2 (s̃)

]
+ n2p

n1n2n3

(
2s̃ +ρT

n2

nM
+ n2p

n1n2n3

)
gn2 (s̃)E

[
m̃n2 (s̃)

]2

+ n2p
n1n2n3

(
1+ s̃

(
ρT

n2

nM
+ n2p

n1n2n3

))
gn2 (s̃)E

[
m̃n2 (s̃)

]3

166



6.A. Proof of Theorem 6.1

+
(
m̃(s̃)+ρT

n2

nM
m̃2(s̃)

)(
ρT

nM

(
3E

[
m̃n2 (s̃)

]+ s̃
)+ 1

n2

)
g 2

n2
(s̃)+O s̃ (n−3/2

T ) (6.23)

or, more simply,

E
[
m̃n2 (s̃)

]= m̃(s̃)+ 2n2p
n1n2n3

gn2 (s̃)E
[
m̃n2 (s̃)

]+ n2p
n1n2n3

(
2s̃ +ρT

n2

nM

)
gn2 (s̃)E

[
m̃n2 (s̃)

]2

+ n2p
n1n2n3

(
1+ s̃ρT

n2

nM

)
gn2 (s̃)E

[
m̃n2 (s̃)

]3 +O s̃ (n−1
T ). (6.24)

Let us now replace every E[m̃n2 (s̃)] in the right-hand side of Equation (6.24) by m̃(s̃)+O s̃ (n−1/2
T ).

E
[
m̃n2 (s̃)

]= m̃(s̃)

[
1+ n2p

n1n2n3
gn2 (s̃)

(
2+

(
2s̃ +ρT

n2

nM

)
m̃(s̃)+

(
1+ s̃ρT

n2

nM

)
m̃2(s̃)

)]
+O s̃ (n−1

T ). (6.25)

We can now inject Equation (6.25) in Equation (6.23). After a few simplifications, this yields

E
[
m̃n2 (s̃)

]= m̃(s̃)+ n2p
n1n2n3

gn2 (s̃)m̃(s̃)q(s̃)

+ n2

n1n3
g 2

n2
(s̃)m̃(s̃)q(s̃)

(
2+2

(
2s̃ +ρT

n2

nM

)
m̃(s̃)+3

(
1+ s̃ρT

n2

nM

)
m̃2(s̃)

)
+ gn2 (s̃)m̃(s̃)

(
ρT

nM
+ n2

n1n3

(
m̃(s̃)+ s̃m̃2(s̃)

))
+ 1

n2
g 2

n2
(s̃)

(
m̃(s̃)+ρT

n2

nM
m̃2(s̃)

)(
ρT

n2

nM
(3m̃(s̃)+ s̃)+1

)
+O s̃ (n−3/2

T ). (6.26)

where q(s̃)
def= 2+

(
2s̃ +ρT

n2
nM

)
m̃(s̃)+

(
1+ s̃ρT

n2
nM

)
m̃2(s̃).

We just need to find an expansion of gn2 (s̃) up to a O s̃ (n−1
T ) term to conclude this section. From

the fact that ∆n2 (s̃) =O s̃ (n−1/2
T ), Equation (6.22) becomes

gn2 (s̃) = g (s̃)

(
1+ g (s̃)∆(2)

n2
(s̃)

(
ρT

n2

nM

(
3m̃(s̃)+∆(2)

n2
(s̃)+ s̃

)+1

)
+O s̃ (n−1

T )

)
= g (s̃)

(
1+ g (s̃)∆(2)

n2
(s̃)

(
ρT

n2

nM
(3m̃(s̃)+ s̃)+1

))
+O s̃ (n−1

T )

Let us use Equation (6.25) (with gn2 (s̃) replaced by g (s̃)+O s̃ (n−1/2
T )) to develop the ∆(2)

n2
(s̃) in the last

equality.

gn2 (s̃) = g (s̃)

(
1+ n2p

n1n2n3
g 2(s̃)m̃(s̃)q(s̃)

(
ρT

n2

nM
(3m̃(s̃)+ s̃)+1

))
+O s̃ (n−1

T ).

We can now inject this relation in Equation (6.26).

E
[
m̃n2 (s̃)

]= m̃(s̃)+h(s̃)+O s̃ (n−3/2
T ) (6.27)

with

h(s̃)
def= n2p

n1n2n3
g (s̃)m̃(s̃)q(s̃)+ n2

n1n3
g 3(s̃)m̃2(s̃)q2(s̃)

(
ρT

n2

nM
(3m̃(s̃)+ s̃)+1

)
+ n2

n1n3
g 2(s̃)m̃(s̃)q(s̃)

(
2+2

(
2s̃ +ρT

n2

nM

)
m̃(s̃)+3

(
1+ s̃ρT

n2

nM

)
m̃2(s̃)

)
+ g (s̃)m̃(s̃)

(
ρT

nM
+ n2

n1n3

(
m̃(s̃)+ s̃m̃2(s̃)

))
+ 1

n2
g 2(s̃)

(
m̃(s̃)+ρT

n2

nM
m̃2(s̃)

)(
ρT

n2

nM
(3m̃(s̃)+ s̃)+1

)
.
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6.A.5 Confinement of the Spectrum

With the method presented in Section 2.3.2, we prove that for all ε> 0, there exists an integer n0 such
that Dist( nT λ−n1n3p

n1n2n3
,Supp ν̃) É ε for all λ ∈ SpT (2)T (2)⊤ as soon as nT Ê n0.

Let ε > 0 and Sε = {x ∈ R | Dist(x,Supp ν̃) < ε}. Let ϕ : R→ [0,1] be an infinitely differentiable
function which equals 1 on Supp ν̃ and 0 on R \ Sε. We also define ψ = 1−ϕ. In order to show that

Trψ

(
nT T (2)T (2)⊤−n1n3 In2p

n1n2n3

)
→ 0 almost surely as n1,n2,n3 →+∞, we prove the convergence of the expec-

tation and the O (n−3/2
T ) decay of the fourth moment.

Firstly, we show that E

[
Trψ

(
nT T (2)T (2)⊤−n1n3 In2p

n1n2n3

)]
→ 0 as n1,n2,n3 →+∞. Just as presented in Sec-

tion 2.3.2, using the Helffer-Sjöstrand formula (Proposition 2.12), the development of E[m̃n2 (s̃)] (Equa-
tion (6.27)), an integration by parts and the analyticity of h, we find that

E

[
1

n2
Trϕ

(
nT T (2)T (2)⊤−n1n3In2p

n1n2n3

)]
= 1+ lim

y↓0

1

π

∫
R
ℑ[h(x + iy)] dx +O (n−3/2

T ).

We can rely on Lemma 2.14 to evaluate the integral: h is analytic on C \ Supp ν̃, h(s̃) → 0 as |s̃| → +∞
and h( ¯̃s) = h(s̃). Hence, we just need to find an upper bound to |h(z)| as in the third assumption of
Lemma 2.14. To this end, let us remark that, because Supp ν̃ is compact, |s̃|

Dist(s̃,Supp ν̃) → 1 as |s̃| → +∞
and thus there exists a constant M > 0 such that |s̃| Ê M =⇒ 1

2 Dist(s̃,Supp ν̃) É |s̃| É 3
2 Dist(s̃,Supp ν̃).

Then, for any integer κÊ 1,

• if |s̃| É M , |s̃|
Dist(s̃,Supp ν̃)κ É M

Dist(s̃,Supp ν̃)κ É M max(Dist(s̃,Supp ν̃)−κ,1),

• if |s̃| Ê M , |s̃|
Dist(s̃,Supp ν̃)κ É 3

2
1

Dist(s̃,Supp ν̃)κ−1 É 3
2 max(Dist(s̃,Supp ν̃)−κ,1).

Thus, more simply, |s̃|
Dist(s̃,Supp ν̃)κ É Cs max(Dist(s̃,Supp ν̃)−κ,1) with Cs = max(M , 3

2 ). Let us start by
finding an upper bound to |q(s̃)|.

∣∣q(s̃)
∣∣É 2+

2|s̃|+ρT
n2
nM

Dist(s̃,Supp ν̃)
+

1+|s̃|ρT
n2
nM

Dist(s̃,Supp ν̃)2 ÉCq max(Dist(s̃,Supp ν̃)−2,1)

with Cq = 2+2Cs +ρT
n2
nM

+1+CsρT
n2
nM

. Then, we can upper bound |g (s̃)| using Lemma 6.15.∣∣g (s̃)
∣∣ÉCg max(Dist(s̃,Supp ν̃)−2,1)

with Cg = max(2Cs ,C0). We are now ready to upper bound |h(s̃)|.

|h(s̃)| ÉCh max(Dist(s̃,Supp ν̃)−13,1)

with

Ch = n2p
n1n2n3

Cg Cq + n2

n1n3
C 3

g C 2
q

(
ρT

n2

nM
(3+Cs )+1

)
+ n2

n1n3
C 2

g Cq

(
2+2

(
2Cs +ρT

n2

nM

)
+3

(
1+CsρT

n2

nM

))
+Cg

(
ρT

nM
+ n2

n1n3
(1+Cs )

)
+

C 2
g

n2

(
1+ρT

n2

nM

)(
ρT

n2

nM
(3+Cs )+1

)
.
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Hence, Lemma 2.14 gives us

lim
y↓0

1

π

∫
R
ℑ[h(x + iy)] dx = lim

y→+∞−iyh(iy) = 0

and therefore E

[
1

n2
Trϕ

(
nT T (2)T (2)⊤−n1n3 In2p

n1n2n3

)]
= 1+O (n−3/2

T ), which is equivalent to the desired result:

E

[
Trψ

(
nT T (2)T (2)⊤−n1n3 In2p

n1n2n3

)]
=O (n−1/2

T ).

Secondly, we show that the convergence is almost sure thanks to Lemma 2.20. Indeed, with the
Poincaré-Nash inequality (Lemma 2.19), we have

Var

(
Trψ

(
nT T (2)T (2)⊤−n1n3In2p

n1n2n3

))
É A+B

with A =∑n1
i=1

∑n2
j=1E


∣∣∣∣∣∣
∂Trϕ

(
nT T (2)T (2)⊤−n1n3 In2p

n1n2n3

)
∂Ni , j

∣∣∣∣∣∣
2 and B =∑n2

u=1

∑n1n3
v=1 E


∣∣∣∣∣∣
∂Trϕ

(
nT T (2)T (2)⊤−n1n3 In2p

n1n2n3

)
∂W (2)

u,v

∣∣∣∣∣∣
2.

Skipping a few cumbersome computations, we find

A = 4
n2

T

n1n2n3

β2
T

nM
E

[∥∥∥∥∥(
In1 ⊠ z

)⊤T (2)⊤ϕ′
(

nT T (2)T (2)⊤−n1n3In2p
n1n2n3

)∥∥∥∥∥
2

F

]
,

B = 4
n2

T

n1n2n3

1

nT
E

[∥∥∥∥∥T (2)⊤ϕ′
(

nT T (2)T (2)⊤−n1n3In2p
n1n2n3

)∥∥∥∥∥
2

F

]
.

Hence, using the inequality ∥AB∥F É ∥A∥∥B∥F and the fact that ∥In1 ⊠ z∥ = 1 in A, we obtain

Var

(
Trψ

(
nT T (2)T (2)⊤−n1n3In2p

n1n2n3

))
É 4

n2
T

n1n2n3

(
β2

T

nM
+ 1

nT

)
E

[∥∥∥∥∥T (2)⊤ϕ′
(

nT T (2)T (2)⊤−n1n3In2p
n1n2n3

)∥∥∥∥∥
2

F

]
.

Moreover, we have

nTp
n1n2n3

∥∥∥∥∥T (2)⊤ϕ′
(

nT T (2)T (2)⊤−n1n3In2p
n1n2n3

)∥∥∥∥∥
2

F

= Tru

(
nT T (2)T (2)⊤−n1n3In2p

n1n2n3

)
+ n1n3p

n1n2n3
Trϕ′2

(
nT T (2)T (2)⊤−n1n3In2p

n1n2n3

)

with u : x 7→ xϕ′2(x). Thus,

Var

(
Trψ

(
nT T (2)T (2)⊤−n1n3In2p

n1n2n3

))
É 4

nTp
n1n2n3

(
β2

T

nM
+ 1

nT

)
E

[
Tru

(
nT T (2)T (2)⊤−n1n3In2p

n1n2n3

)]

+4
nT

n2

(
β2

T

nM
+ 1

nT

)
E

[
Trϕ′2

(
nT T (2)T (2)⊤−n1n3In2p

n1n2n3

)]
.

Since u and ϕ′2 are compactly supported infinitely differentiable functions which equal 0 on Supp ν̃,
with the Helffer-Sjöstrand formula (Proposition 2.12), we find that

Var

(
Trψ

(
nT T (2)T (2)⊤−n1n3In2p

n1n2n3

))
= 4

nTp
n1n2n3

(
β2

T

nM
+ 1

nT

)
×O (n−1/2

T )+4
nT

n2

(
β2

T

nM
+ 1

nT

)
×O (n−1/2

T )
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=O (n−1
T ).

Unfortunately, this is not enough to apply Lemma 2.20, so we must evaluate the moment of order
κ= 4.

E

[∣∣∣∣∣Trψ

(
nT T (2)T (2)⊤−n1n3In2p

n1n2n3

)
−E

[
Trψ

(
nT T (2)T (2)⊤−n1n3In2p

n1n2n3

)]∣∣∣∣∣
4]

= Var

((
Trψ

(
nT T (2)T (2)⊤−n1n3In2p

n1n2n3

)
−E

[
Trψ

(
nT T (2)T (2)⊤−n1n3In2p

n1n2n3

)])2)

+
∣∣∣∣∣E

[(
Trψ

(
nT T (2)T (2)⊤−n1n3In2p

n1n2n3

)
−E

[
Trψ

(
nT T (2)T (2)⊤−n1n3In2p

n1n2n3

)])2]∣∣∣∣∣
2

.

From our previous result, the rightmost term is O (n−2
T ). To handle the first term of the right-hand side,

we proceed similarly as above, with the Poincaré-Nash inequality (Lemma 2.19), and we find that

Var

((
Trψ

(
nT T (2)T (2)⊤−n1n3In2p

n1n2n3

)
−E

[
Trψ

(
nT T (2)T (2)⊤−n1n3In2p

n1n2n3

)])2)

É 16
n2

T

n1n2n3

(
β2

T

nM
+ 1

nT

)
E

[∣∣∣∣∣(Trϕ−ETrϕ
)( nT T (2)T (2)⊤−n1n3In2p

n1n2n3

)∣∣∣∣∣
2∥∥∥∥∥T (2)⊤ϕ′

(
nT T (2)T (2)⊤−n1n3In2p

n1n2n3

)∥∥∥∥∥
2

F

]

= 16
nTp

n1n2n3

(
β2

T

nM
+ 1

nT

)
E

[∣∣∣∣∣(Trϕ−ETrϕ
)( nT T (2)T (2)⊤−n1n3In2p

n1n2n3

)∣∣∣∣∣
2

Tru

(
nT T (2)T (2)⊤−n1n3In2p

n1n2n3

)]

+16
nT

n2

(
β2

T

nM
+ 1

nT

)
E

[∣∣∣∣∣(Trϕ−ETrϕ
)( nT T (2)T (2)⊤−n1n3In2p

n1n2n3

)∣∣∣∣∣
2

Trϕ′2
(

nT T (2)T (2)⊤−n1n3In2p
n1n2n3

)]
=O (n−3/2

T ).

Finally, we can conclude with Lemma 2.20:

Trψ

(
nT T (2)T (2)⊤−n1n3In2p

n1n2n3

)
−−−−−−−−−−→
n1,n2,n3→+∞ 0 almost surely.

6.B Proof of Theorem 6.2

6.B.1 Convergence of Bilinear Forms

Recall that Q̃ (2)
0 denotes the resolvent of the model without signal (βM = 0). That is,

Q̃ (2)
0 (s̃) =

(
nT T (2)

0 T (2)⊤
0 −n1n3In2p
n1n2n3

− s̃In2

)−1

with T (2)
0

def= βTp
nM

N⊤(
In1 ⊠ z

)⊤+ 1p
nT

W (2).

We want to show the following result: for all bounded (sequences of) vectors a,b ∈Rn2 ,

a⊤Q̃ (2)
0 (s̃)b −m̃(s̃)〈a,b〉 −−−−−−−−−−→

n1,n2,n3→+∞ 0 almost surely.

Since we already know that a⊤(Q̃ (2)
0 (s̃)−E[Q̃ (2)

0 (s̃)])b → almost surely (see Section 6.A.3), we only
need to show the convergence of the expectation. Let us multiply Equation (6.14) when βM = 0 by a⊤

on the left and b on the right.
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ρT
n2

nM
E
[

a⊤Q̃ (2)bm̃2
n2

(s̃)
]+(

1+ s̃ρT
n2

nM

)
E
[

a⊤Q̃ (2)bm̃n2 (s̃)
]+(

s̃ +ρT
n2 −n1

nM

)
E
[

a⊤Q̃ (2)b
]+〈a,b〉

=O s̃ (n−1/2
T )

From Equations (6.16), (6.17) and (6.19) together with the Cauchy-Schwarz inequality, we have

E
[

a⊤Q̃ (2)bm̃2
n2

(s̃)
]= E[a⊤Q̃ (2)b

]
E
[
m̃n2 (s̃)

]2 +O s̃ (n−1
T )

and E
[

a⊤Q̃ (2)bm̃n2 (s̃)
]= E[a⊤Q̃ (2)b

]
E
[
m̃n2 (s̃)

]+O s̃ (n−1
T ).

Moreover E[m̃n2 (s̃)] = m̃(s̃)+O s̃ (n−1/2
T ) so we obtain(

ρT
n2

nM
m̃2(s̃)+

(
1+ s̃ρT

n2

nM

)
m̃(s̃)+

(
s̃ +ρT

n2 −n1

nM

))
︸ ︷︷ ︸

=− 1
m̃(s̃)

E
[

a⊤Q̃ (2)b
]+〈a,b〉 =O s̃ (n−1/2

T ),

which gives the desired result.

6.B.2 Isolated Eigenvalue

We seek the asymptotic position ξ̃ of an eigenvalue of nTp
n1n2n3

T (2)T (2)⊤− n1n3p
n1n2n3

In2 which is not in the

limiting spectrum of nTp
n1n2n3

T (2)
0 T (2)⊤

0 − n1n3p
n1n2n3

In2 . Because ξ̃ ∈ Sp
(

nTp
n1n2n3

T (2)T (2)⊤− n1n3p
n1n2n3

In2

)
, it

must verify

det

(
nTp

n1n2n3
T (2)T (2)⊤− n1n3p

n1n2n3
In2 − ξ̃In2

)
= 0.

With the decomposition T (2) =βTβM y(x ⊠ z)⊤+T (2)
0 , this becomes

det

(
nTp

n1n2n3

(
β2

Tβ
2
M y y⊤+βTβM y(x ⊠ z)⊤T (2)⊤

0 +βTβM T (2)
0 (x ⊠ z)y⊤

)
+ nTp

n1n2n3
T (2)

0 T (2)⊤
0 − n1n3p

n1n2n3
In2 − ξ̃In2

)
= 0

and, for nT large enough, det
(

nTp
n1n2n3

T (2)
0 T (2)⊤

0 − n1n3p
n1n2n3

In2 − ξ̃In2

)
̸= 0 by the confinement of the

spectrum of nTp
n1n2n3

T (2)
0 T (2)⊤

0 − n1n3p
n1n2n3

In2 proven in Section 6.A.5, therefore

det

(
nTp

n1n2n3

(
β2

Tβ
2
M y y⊤+βTβM y(x ⊠ z)⊤T (2)⊤

0 +βTβM T (2)
0 (x ⊠ z)y⊤

)
Q̃ (2)

0 (ξ̃)+ In2

)
= 0.

Notice that the sumβ2
Tβ

2
M y y⊤+βTβM y(x⊠z)⊤T (2)⊤

0 +βTβM T (2)
0 (x⊠z)y⊤ can be written as the matrix

product
[
βTβM y βTβM y T (2)

0 (x⊠z)
][ βTβM y⊤

(x⊠z)⊤T (2)⊤
0

βTβM y⊤

]
. Hence, with Sylvester’s identity (Proposition 2.22), our

n2 ×n2 determinant becomes a 3×3 determinant:

det

 nTp
n1n2n3

 β2
Tβ

2
M y⊤Q̃(2)

0 (ξ̃)y β2
Tβ

2
M y⊤Q̃(2)

0 (ξ̃)y βTβM y⊤Q̃(2)
0 (ξ̃)T (2)

0 (x⊠z)

βTβM (x⊠z)⊤T (2)⊤
0 Q̃(2)

0 (ξ̃)y βTβM (x⊠z)⊤T (2)⊤
0 Q̃(2)

0 (ξ̃)y (x⊠z)⊤T (2)⊤
0 Q̃(2)

0 (ξ̃)T (2)
0 (x⊠z)

β2
Tβ

2
M y⊤Q̃(2)

0 (ξ̃)y β2
Tβ

2
M y⊤Q̃(2)

0 (ξ̃)y βTβM y⊤Q̃(2)
0 (ξ̃)T (2)

0 (x⊠z)

+ I3

= 0. (6.28)

We have nTp
n1n2n3

β2
Tβ

2
M y⊤Q̃ (2)

0 (ξ̃)y → ρTβ
2
M m̃(ξ̃) almost surely so this is the limit of the entries (1,1),

(1,2), (3,1) and (3,2). Then, the entries (1,3), (2,1), (2,2) and (3,3) vanish almost surely since
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nTp
n1n2n3

βTβM

∣∣∣y⊤Q̃ (2)
0 (ξ̃)T (2)

0 (x ⊠ z)
∣∣∣

É ρTβMp
nM

∣∣∣y⊤Q̃ (2)
0 (ξ̃)N⊤x

∣∣∣+ nTp
n1n2n3

βTβMp
nT

∣∣∣y⊤Q̃ (2)
0 (ξ̃)W (2)(x ⊠ z)

∣∣∣
where 1p

nT
∥W (2)(x ⊠ z)∥ = O (1) almost surely5 so the second term in the right-hand side is O (n−1/4

T )

almost surely and the first term is handled with the following lemma.

Lemma 6.17. For all bounded (sequences of) vectors a ∈Rn2 , b ∈Rn1 , 1p
nM

|a⊤Q̃ (2)
0 (ξ̃)N⊤b| → 0 almost

surely as n1,n2,n3 →+∞.

Proof. The proof is performed with the standard approach relying on Stein’s lemma (Lemma 2.18) and
the Poincaré-Nash inequality (Lemma 2.19).

With the Poincaré-Nash inequality we find that

Var

(
1p
nM

a⊤Q̃ (2)
0 (ξ̃)N⊤b

)
É ∥a∥2∥b∥2

nM
E

[
2
∥∥∥Q̃ (2)

0 (ξ̃)
∥∥∥2

+4
n2

T

n1n2n3

(
β2

T

nM
+ 1

nT

)
∥N∥2

∥∥∥T (2)
0

∥∥∥2∥∥∥Q̃ (2)
0 (ξ̃)

∥∥∥4
]
=O (n−1/2

T ),

E

[∣∣∣∣ 1p
nM

a⊤Q̃ (2)
0 (ξ̃)N⊤b −E

[
1p
nM

a⊤Q̃ (2)
0 (ξ̃)N⊤b

]∣∣∣∣4]
É ∥a∥2∥b∥2

n2
M

E

[∣∣∣∣ 1p
nM

a⊤Q̃ (2)
0 (ξ̃)N⊤b −E

[
1p
nM

a⊤Q̃ (2)
0 (ξ̃)N⊤b

]∣∣∣∣2

×
(

8
∥∥∥Q̃ (2)

0 (ξ̃)
∥∥∥2

+16
n2

T

n1n2n3

(
β2

T

nM
+ 1

nT

)
∥N∥2

∥∥∥T (2)
0

∥∥∥2∥∥∥Q̃ (2)
0 (ξ̃)

∥∥∥4
)]

+Var

(
1p
nM

a⊤Q̃ (2)
0 (ξ̃)N⊤b

)2

=O (n−1
T ),

E

[∣∣∣∣ 1p
nM

a⊤Q̃ (2)
0 (ξ̃)N⊤b −E

[
1p
nM

a⊤Q̃ (2)
0 (ξ̃)N⊤b

]∣∣∣∣6]
É ∥a∥2∥b∥2

n3
M

E

[∣∣∣∣ 1p
nM

a⊤Q̃ (2)
0 (ξ̃)N⊤b −E

[
1p
nM

a⊤Q̃ (2)
0 (ξ̃)N⊤b

]∣∣∣∣4

×
(

18
∥∥∥Q̃ (2)

0 (ξ̃)
∥∥∥2

+36
n2

T

n1n2n3

(
β2

T

nM
+ 1

nT

)
∥N∥2

∥∥∥T (2)
0

∥∥∥2∥∥∥Q̃ (2)
0 (ξ̃)

∥∥∥4
)]

+E
[∣∣∣∣ 1p

nM
a⊤Q̃ (2)

0 (ξ̃)N⊤b −E
[

1p
nM

a⊤Q̃ (2)
0 (ξ̃)N⊤b

]∣∣∣∣4]2

=O (n−2
T ).

By Lemma 2.20, this shows that 1p
nM

a⊤Q̃ (2)
0 (ξ̃)N⊤b −E[ 1p

nM
a⊤Q̃ (2)

0 (ξ̃)N⊤b] → 0 almost surely. Thus,

we just need to show that E[ 1p
nM

a⊤Q̃ (2)
0 (ξ̃)N⊤b] → 0.

With Stein’s lemma, we find that

1p
nM

E
[

a⊤Q̃ (2)
0 (ξ̃)N⊤b

]
=− βT

nM

nTp
n1n2n3

a⊤E
[(

Q̃ (2)2
0 (ξ̃)+Q̃ (2)

0 (ξ̃)TrQ̃ (2)
0 (ξ̃)

)
T (2)

0

]
(b ⊠ z)

and, with the decomposition T (2)
0 = βTp

nM
N⊤(In1 ⊠ z)+ 1p

nT
W (2), it becomes

5See footnote 16 in Chapter 5.
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1p
nM

E
[

a⊤Q̃ (2)
0 (ξ̃)N⊤b

]
=− ρT

nM
p

nM
E
[

a⊤
(
Q̃ (2)2

0 (ξ̃)+Q̃ (2)
0 (ξ̃)TrQ̃ (2)

0 (ξ̃)
)

N⊤b
]

− βT

nM
p

nT

nTp
n1n2n3

E
[

a⊤
(
Q̃ (2)2

0 (ξ̃)+Q̃ (2)
0 (ξ̃)TrQ̃ (2)

0 (ξ̃)
)
W (2)

0 (b ⊠ z)
]

.

Almost surely, ∥N⊤b∥,∥W (2)(b ⊠ z)∥ =O (n1/2
T ) therefore we just have

1p
nM

E
[

a⊤Q̃ (2)
0 (ξ̃)N⊤b

]
=− ρT

nM
p

nM
E
[

a⊤Q̃ (2)
0 (ξ̃)N⊤b TrQ̃ (2)

0 (ξ̃)
]
+O (n−1/4

T )

or, equivalently,

1p
nM

E

[(
1+ρT

n2

nM

TrQ̃ (2)
0 (ξ̃)

n2

)
a⊤Q̃ (2)

0 (ξ̃)N⊤b

]
=O (n−1/4

T ).

Since 1
n2

TrQ̃ (2)
0 (ξ̃) → m̃(ξ̃) almost surely, this shows that E[ 1p

nM
a⊤Q̃ (2)

0 (ξ̃)N⊤b] =O (n−1/4
T ).

We just need to find the limiting behavior of the entry (2,3). To this end, notice that

nTp
n1n2n3

(x ⊠ z)⊤T (2)⊤
0 Q̃ (2)

0 (ξ̃)T (2)
0 (x ⊠ z)

= ρT

nM
x⊤NQ̃ (2)

0 (ξ̃)N⊤x + 1p
n1n2n3

(x ⊠ z)⊤W (2)Q̃ (2)
0 (ξ̃)W (2)⊤(x ⊠ z)

+ nTp
n1n2n3

βTp
nT nM

(
x⊤NQ̃ (2)

0 (ξ̃)W (2)(x ⊠ z)+ (x ⊠ z)⊤W (2)⊤Q̃ (2)
0 (ξ̃)N⊤x

)
.

Since ∥N⊤x∥,∥W (2)(x ⊠ z)∥ = O (n1/2
T ) almost surely, we can see that the only non-vanishing term is

ρT
nM

x⊤NQ̃ (2)
0 (ξ̃)N⊤x . Moreover, we have the following lemma.

Lemma 6.18. ρT
nM

x⊤NQ̃ (2)
0 (ξ̃)N⊤x → ρT

n2
nM

m̃(ξ̃)

1+ρT
n2

nM
m̃(ξ̃)

almost surely as n1,n2,n3 →+∞.

Proof. Firstly, let us show that ρT
nM

x⊤NQ̃ (2)
0 (ξ̃)N⊤x− ρT

nM
x⊤E[NQ̃ (2)

0 (ξ̃)N⊤]x → 0 almost surely. With the
Poincaré-Nash inequality (Lemma 2.19), we find that

Var

(
ρT

nM
x⊤NQ̃ (2)

0 (ξ̃)N⊤x
)

É 8
ρ2

T

n2
M

E

[
∥N∥2

∥∥∥Q̃ (2)
0 (ξ̃)

∥∥∥2
+

n2
T

n1n2n3

(
β2

T

nM
+ 1

nT

)
∥N∥4

∥∥∥T (2)
0

∥∥∥2∥∥∥Q̃ (2)
0 (ξ̃)

∥∥∥4
]
=O (n−1/2

T ),

E

[∣∣∣∣ ρT

nM
x⊤NQ̃ (2)

0 (ξ̃)N⊤x −E
[
ρT

nM
x⊤NQ̃ (2)

0 (ξ̃)N⊤x
]∣∣∣∣4]

É 32
ρ4

T

n4
M

E

[∣∣∣x⊤NQ̃ (2)
0 (ξ̃)N⊤x −E

[
x⊤NQ̃ (2)

0 (ξ̃)N⊤x
]∣∣∣2 n2

T

n1n2n3

(
β2

T

nM
+ 1

nT

)
∥N∥4

∥∥∥T (2)
0

∥∥∥2∥∥∥Q̃ (2)
0 (ξ̃)

∥∥∥4
]

+32
ρ4

T

n4
M

E

[∣∣∣x⊤NQ̃ (2)
0 (ξ̃)N⊤x −E

[
x⊤NQ̃ (2)

0 (ξ̃)N⊤x
]∣∣∣2

∥N∥2
∥∥∥Q̃ (2)

0 (ξ̃)
∥∥∥2

]
+Var

(
ρT

nM
x⊤NQ̃ (2)

0 (ξ̃)N⊤x
)2

=O (n−1
T ),
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E

[∣∣∣∣ ρT

nM
x⊤NQ̃ (2)

0 (ξ̃)N⊤x −E
[
ρT

nM
x⊤NQ̃ (2)

0 (ξ̃)N⊤x
]∣∣∣∣6]

É 72
ρ6

T

n6
M

E

[∣∣∣x⊤NQ̃ (2)
0 (ξ̃)N⊤x −E

[
x⊤NQ̃ (2)

0 (ξ̃)N⊤x
]∣∣∣4 n2

T

n1n2n3

(
β2

T

nM
+ 1

nT

)
∥N∥4

∥∥∥T (2)
0

∥∥∥2∥∥∥Q̃ (2)
0 (ξ̃)

∥∥∥4
]

+72
ρ6

T

n6
M

E

[∣∣∣x⊤NQ̃ (2)
0 (ξ̃)N⊤x −E

[
x⊤NQ̃ (2)

0 (ξ̃)N⊤x
]∣∣∣4

∥N∥2
∥∥∥Q̃ (2)

0 (ξ̃)
∥∥∥2

]

+E
[∣∣∣∣ ρT

nM
x⊤NQ̃ (2)

0 (ξ̃)N⊤x −E
[
ρT

nM
x⊤NQ̃ (2)

0 (ξ̃)N⊤x
]∣∣∣∣4]2

=O (n−2
T ).

Hence ρT
nM

x⊤NQ̃ (2)
0 (ξ̃)N⊤x − ρT

nM
x⊤E[NQ̃ (2)

0 (ξ̃)N⊤]x → 0 almost surely by Lemma 2.20.

Secondly, we just need to show that E[ ρT
nM

x⊤NQ̃ (2)
0 (ξ̃)N⊤x] → ρT

n2
nM

m̃(ξ̃)

1+ρT
n2

nM
m̃(ξ̃)

in order to conclude.

With Stein’s lemma (Lemma 2.18), we find that

E

[
ρT

nM
x⊤NQ̃ (2)

0 (ξ̃)N⊤x
]

= ρT

nM
E

[
TrQ̃ (2)

0 (ξ̃)− nTp
n1n2n3

βTp
nM

x⊤N
(
Q̃ (2)2

0 (ξ̃)+Q̃ (2)
0 (ξ̃)TrQ̃ (2)

0 (ξ̃)
)
T (2)

0 (x ⊠ z)

]
= ρT

nM
E

[
TrQ̃ (2)

0 (ξ̃)− ρT

nM
x⊤N

(
Q̃ (2)2

0 (ξ̃)+Q̃ (2)
0 (ξ̃)TrQ̃ (2)

0 (ξ̃)
)

N⊤x

− nTp
n1n2n3

βTp
nM nT

x⊤N
(
Q̃ (2)2

0 (ξ̃)+Q̃ (2)
0 (ξ̃)TrQ̃ (2)

0 (ξ̃)
)
W (2)

0 (x ⊠ z)

]
where the second line stems from the decomposition T (2)

0 = βTp
nM

N⊤(In1 ⊠ z)⊤+ 1p
nT

W (2). Then, re-

calling that m̃n2 = 1
n2

TrQ̃ (2)
0 , we have

E

[
ρT

nM

(
1+ n2

nM
m̃n2 (ξ̃)

)
x⊤NQ̃ (2)

0 (ξ̃)N⊤x
]
= ρT

n2

nM
E
[
m̃n2 (ξ̃)

]+O (n−1/4
T )

since ∥W (2)
0 (x ⊠ z)∥ = O (n1/2

T ) almost surely. Then, using the Cauchy-Schwarz inequality, we have

|Cov(m̃n2 (ξ̃), x⊤NQ̃ (2)
0 (ξ̃)N⊤x)| É

√
Var(m̃n2 (ξ̃)Var(x⊤NQ̃ (2)

0 (ξ̃)N⊤x)) = O (n−5/4
T ) whence the relation

E[m̃n2 (ξ̃)x⊤NQ̃ (2)
0 (ξ̃)N⊤x] = E[m̃n2 (ξ̃)]E[x⊤NQ̃ (2)

0 (ξ̃)N⊤x]+O (n−5/4
T ), which we use with E[m̃n2 (ξ̃)] =

m̃(ξ̃)+O (n−1/2
T ) (see Section 6.A.4) to obtain ρT

nM
E[x⊤NQ̃ (2)

0 (ξ̃)N⊤x] = ρT
n2

nM
m̃(ξ̃)

1+ρT
n2

nM
m̃(ξ̃)

+O (n−1/4
T ).

Eventually, as the determinant is a continuous function in the entries of the matrix, Equation (6.28)
becomes asymptotically almost surely

det



ρTβ

2
M m̃(ξ̃) ρTβ

2
M m̃(ξ̃) 0

0 0
ρT

n2
nM

m̃(ξ̃)

1+ρT
n2

nM
m̃(ξ̃)

ρTβ
2
M m̃(ξ̃) ρTβ

2
M m̃(ξ̃) 0

+ I3

= 0.

Computing this determinant gives 1+ρT

(
n2
nM

+β2
M

)
m̃(ξ̃) = 0. Then, injecting m̃(ξ̃) = −1

ρT

(
n2

nM
+β2

M

) in the

equation ρT
n2
nM

m̃3(s̃)+ (1+ s̃ρT
n2
nM

)m̃2(s̃)+ (s̃ +ρT
n2−n1

nM
)m̃(s̃)+1 = 0 defining m̃, we obtain

ξ̃= ρT

β2
M

(
n1

nM
+β2

M

)(
n2

nM
+β2

M

)
+ 1

ρT

(
n2
nM

+β2
M

) .
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6.B.3 Deterministic Equivalent of the Resolvent

In order to determine the alignment of the dominant eigenvector of T (2)T (2)⊤ with y in the next sec-
tion, let us exhibit a deterministic equivalent of the resolvent Q̃ (2).

Applying the change of variable (s,Q (2)) æ (s̃,Q̃ (2)) to Equation (6.11) yields

E
[

y x⊤NQ̃ (2)]=− βTp
nM

nTp
n1n2n3

E
[

y(x ⊠ z)⊤T (2)⊤(
Q̃ (2) TrQ̃ (2) +Q̃ (2)2)].

Hence, we have

E
[

y x⊤MQ̃ (2)]=βM y y⊤E
[
Q̃ (2)]+ 1p

nM
E
[

y x⊤NQ̃ (2)]
=βM y y⊤E

[
Q̃ (2)]− βT

nM

nTp
n1n2n3

E
[

y(x ⊠ z)⊤T (2)⊤(
Q̃ (2) TrQ̃ (2) +Q̃ (2)2)]

=βM y y⊤E
[
Q̃ (2)]− βT

nM

nTp
n1n2n3

E

[(
βT y x⊤M + 1p

nT
y(x ⊠ z)⊤W (2)⊤

)(
Q̃ (2) TrQ̃ (2) +Q̃ (2)2)]

=βM y y⊤E
[
Q̃ (2)]−ρT

n2

nM
E

[
TrQ̃ (2)

n2
y x⊤MQ̃ (2)

]
−E

[
ρT

nM
y x⊤MQ̃ (2)2 + βT

nM

nTp
n1n2n3

1p
nT

y(x ⊠ z)⊤W (2)⊤(
Q̃ (2) TrQ̃ (2) +Q̃ (2)2)]

Since ∥M∥ =O (1) and 1p
nT

∥W (2)(x⊠z)∥ =O (1) almost surely, the norm of the last expectation vanishes

as n1,n2,n3 →+∞. Moreover 1
n2

TrQ̃ (2)(s̃) → m̃(s̃) almost surely, therefore∥∥∥∥(
1+ρT

n2

nM
m̃(s̃)

)
E
[

y x⊤MQ̃ (2)]−βM y y⊤E
[
Q̃ (2)]∥∥∥∥→ 0.

Thus, from Equation (6.14), we have∥∥∥∥∥
(
ρT

n2

nM
m̃2(s̃)+

(
1+ s̃ρT

n2

nM

)
m̃(s̃)+

(
s̃ +ρT

n2 −n1

nM

))
E
[
Q̃ (2)]+ In2 −

ρTβ
2
M

1+ρT
n2
nM

m̃(s̃)
y y⊤E

[
Q̃ (2)]∥∥∥∥∥→ 0

and, since ρT
n2
nM

m̃2(s̃)+
(
1+ s̃ρT

n2
nM

)
m̃(s̃)+

(
s̃ +ρT

n2−n1
nM

)
= −1

m̃(s̃) , we can define the following deter-

ministic equivalent (Definition 2.17) of Q̃ (2)(s̃):

Q̄(s̃)
def= m̃(s̃)

(
ρTβ

2
M m̃(s̃)

1+ρT
n2
nM

m̃(s̃)
+ In2

)−1

. (6.29)

6.B.4 Eigenvector Alignment

The eigendecomposition of Q̃ (2)(s̃) is given by
∑n

i=1
1

λ̃i−s̃
ui u⊤

i where (λ̃i ,ui )1ÉiÉn are the eigenvalue-

eigenvector pairs of nTp
n1n2n3

T (2)T (2)⊤ − n1n3p
n1n2n3

In2 . Hence, thanks to Cauchy’s integral formula, we

have 〈
y , ŷ

〉2 =− 1

2iπ

∮
γ̃

y⊤Q̃ (2)(s̃)y ds̃

where γ̃ is a positively-oriented simple closed complex contour circling around the isolated eigen-
value only. The asymptotic value ζ of 〈y , ŷ〉2 can then be computed with the deterministic equivalent
defined in Equation (6.29),

ζ=− 1

2iπ

∮
γ̃

y⊤Q̄ (2)(s̃)y ds̃.
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Using residue calculus (Proposition 2.16), we shall compute,

ζ=− lim
s̃→ξ̃

(
s̃ − ξ̃)m̃(s̃)

ρTβ
2
M m̃(s̃)

1+ρT
n2

nM
m̃(s̃)

+1
.

The limit can be expressed using L’Hôpital’s rule,

ζ= −1

d
ds̃

[
ρTβ

2
M

1+ρT
n2

nM
m̃(s̃)

+ 1
m̃(s̃)

]
s̃=ξ̃

=


 1

m̃2(ξ̃)
+

ρ2
Tβ

2
M

n2
nM(

1+ρT
n2
nM

m̃(ξ̃)
)2

m̃′(ξ̃)


−1

=
[(

1+ 1

β2
M

n2

nM

)
m̃′(ξ̃)

m̃2(ξ̃)

]−1

since 1+ρT
n2

nM
m̃(ξ̃) =−ρTβ

2
M m̃(ξ̃)

=
[
ρ2

T

β2
M

(
n2

nM
+β2

M

)3

m̃′(ξ̃)

]−1

since m̃(ξ̃) = −1

ρT

(
n2
nM

+β2
M

) .

In order to find an expression for m̃′(ξ̃), let us differentiate ρT
n2
nM

m̃3(s̃) + (1 + s̃ρT
n2
nM

)m̃2(s̃) + (s̃ +
ρT

n2−n1
nM

)m̃(s̃)+1 = 0,(
3ρT

n2

nM
m̃2(s̃)+2

(
1+ s̃ρT

n2

nM

)
m̃(s̃)+ s̃ +ρT

n2 −n1

nM

)
m̃′(s̃)+ρT

n2

nM
m̃2(s̃)+m̃(s̃) = 0.

Since
(
ρT

n2
nM

m̃2(s̃)+
(
1+ s̃ρT

n2
nM

)
m̃(s̃)+ s̃ +ρT

n2−n1
nM

)
m̃(s̃)+1 = 0, it simplifies into

(
2ρT

n2

nM
m̃2(s̃)+

(
1+ s̃ρT

n2

nM

)
m̃(s̃)− 1

m̃(s̃)

)
m̃′(s̃)+ρT

n2

nM
m̃2(s̃)+m̃(s̃) = 0

and

(
2ρT

n2

nM
m̃(s̃)+1+ s̃ρT

n2

nM
− 1

m̃2(s̃)

)
m̃′(s̃)+ρT

n2

nM
m̃(s̃)+1 = 0.

Using successively m̃(ξ̃) = −1

ρT

(
n2

nM
+β2

M

) and ξ̃= ρT

β2
M

(
n1
nM

+β2
M

)(
n2
nM

+β2
M

)
+ 1

ρT

(
n2

nM
+β2

M

) , we obtain

m̃′(ξ̃) =
−1−ρT

n2
nM

m̃(ξ̃)

2ρT
n2
nM

m̃(ξ̃)+1+ ξ̃ρT
n2
nM

− 1
m̃2(ξ̃)

=
−1+ ρT

n2
nM

ρT

(
n2

nM
+β2

M

)
− 2ρT

n2
nM

ρT

(
n2

nM
+β2

M

) +1+ ξ̃ρT
n2
nM

−ρ2
T

(
n2
nM

+β2
M

)2

=
−ρTβ

2
M

−ρT
n2
nM

+ρTβ
2
M + ξ̃ρ2

T
n2
nM

(
n2
nM

+β2
M

)
−ρ3

T

(
n2
nM

+β2
M

)3

m̃′(ξ̃) =
−ρTβ

2
M

ρTβ
2
M + ρ3

T

β2
M

n2
nM

(
n1
nM

+β2
M

)(
n2
nM

+β2
M

)2
−ρ3

T

(
n2
nM

+β2
M

)3 .
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Hence,

ζ=
−ρTβ

2
M − ρ3

T

β2
M

n2
nM

(
n1
nM

+β2
M

)(
n2
nM

+β2
M

)2
+ρ3

T

(
n2
nM

+β2
M

)3

ρ3
T

(
n2
nM

+β2
M

)3

= 1−
ρTβ

2
M

ρ3
T

(
n2
nM

+β2
M

)3 − 1

β2
M

n2

nM

n1
nM

+β2
M

n2
nM

+β2
M

ζ= 1− 1

β2
M

(
n2
nM

+β2
M

)
 β2

M

ρT

(
n2
nM

+β2
M

)
2

+ n2

nM

(
n1

nM
+β2

M

).

6.C Proof of Theorem 6.5

For all s ∈C\ SpT (3)T (3)⊤, let Q (3)(s) = (
T (3)T (3)⊤− sIn3

)−1
.

6.C.1 Preliminary Results

Let us derive a few useful results for the upcoming analysis.

Proposition 6.19.

E
[
W (3)T (3)⊤Q (3)]= n1n2p

nT
E
[
Q (3)]− 1p

nT
E
[
(n3 +1)Q (3) + s

(
Q (3)2 +Q (3) TrQ (3))], (6.30)

E
[

zm⊤T (3)⊤Q (3)]=βT E
[∥M∥2

Fz z⊤Q (3)]− 1

nT
E
[

zm⊤T (3)⊤(
Q (3) TrQ (3) +Q (3)2)], (6.31)

E
[∥M∥2

FQ (3)]= (
n1n2

nM
+β2

M − 4

nM

)
E
[
Q (3)]− 4

nM

(
s + n3 −n1n2

nT
+ 2

nT

)
E
[
Q (3)2]

− 4n3

nM nT
E

[
Q (3) TrQ (3)

n3

]
− 8

nM nT
sE

[
Q (3)3]− 8n3

nM nT
sE

[
Q (3)2 TrQ (3)

n3

]
−

2β2
T

n2
M

E
[
(n3 −n1n2 +2)Q (3)z z⊤Q (3) + [

z⊤Q (3)z
]
Q (3)]

−
2β2

T n3

n2
M

sE

[
Q (3)z z⊤Q (3) TrQ (3)

n3

]

−
2β2

T

n2
M

sE
[[

z⊤Q (3)z
]
Q (3)2 +Q (3)z z⊤Q (3)2 +Q (3)2z z⊤Q (3)].

(6.32)

In order to prove theses results, we will need the following proposition.

Proposition 6.20.

∂Q(3)
a,b

∂W (3)
c,d

=− 1p
nT

(
Q(3)

a,c

[
T (3)⊤Q (3)]

d ,b +Q(3)
c,b

[
T (3)⊤Q (3)]

d ,a

)
(6.33)

∂Q(3)
a,b

∂Nc,d
=− βTp

nM

([
Q (3)z

]
a

[
T (3)⊤Q (3)]

[c,d ],b +
[
Q (3)z

]
b

[
T (3)⊤Q (3)]

[c,d ],a

)
(6.34)
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Proof. Since ∂Q (3) =−Q (3)∂
(
T (3)T (3)⊤)

Q (3),

∂Q(3)
a,b

∂W (3)
c,d

=−
[

Q (3) ∂T (3)T (3)⊤

∂W (3)
c,d

Q (3)

]
a,b

=−
n3,n1n2,n3∑

e, f ,g=1
Q(3)

a,e

 ∂T (3)
e, f

∂W (3)
c,d

T (3)
g , f +T (3)

e, f

∂T (3)
g , f

∂W (3)
c,d

Q(3)
g ,b

=− 1p
nT

n3,n1n2,n3∑
e, f ,g=1

Q(3)
a,e

(
δe,cδ f ,d T (3)

g , f +T (3)
e, f δg ,cδ f ,d

)
Q(3)

g ,b

∂Q(3)
a,b

∂W (3)
c,d

=− 1p
nT

(
Q(3)

a,c

[
T (3)⊤Q (3)]

d ,b +Q(3)
c,b

[
T (3)⊤Q (3)]

d ,a

)
.

Similarly,

∂Q(3)
a,b

∂Nc,d
=−

n3,n1,n2,n3∑
e, f ,g ,h=1

Q(3)
a,e

(
∂T f ,g ,e

∂Nc,d
T f ,g ,h +T f ,g ,e

∂T f ,g ,h

∂Nc,d

)
Q(3)

h,b

=− βTp
nM

n3∑
e,h=1

Q(3)
a,e

(
zeTc,d ,h +Tc,d ,e zh

)
Q(3)

h,b

∂Q(3)
a,b

∂Nc,d
=− βTp

nM

([
Q (3)z

]
a

[
T (3)⊤Q (3)]

[c,d ],b +
[
Q (3)z

]
b

[
T (3)⊤Q (3)]

[c,d ],a

)
.

Proof of Equation (6.30) With Stein’s lemma (Lemma 2.18) and Proposition 6.20, we have

E
[
W (3)T (3)⊤Q (3)]

i , j =
n1n2,n3∑

k,l=1
E
[

W (3)
i ,k T (3)

l ,k Q(3)
l , j

]

=
n1n2,n3∑

k,l=1
E

 ∂T (3)
l ,k

∂W (3)
i ,k

Q(3)
l , j +T (3)

l ,k

∂Q(3)
l , j

∂W (3)
i ,k


=

n1n2,n3∑
k,l=1

E

[
δl ,iδk,kp

nT
Q(3)

l , j

]

− 1p
nT

n1n2,n3∑
k,l=1

E
[

T (3)
l ,k

(
Q(3)

l ,i

[
T (3)⊤Q (3)]

k, j +Q(3)
i , j

[
T (3)⊤Q (3)]

k,l

)]
= n1n2p

nT
E
[
Q (3)]

i , j −
1p
nT

E
[
Q (3)T (3)T (3)⊤Q (3) +Q (3) TrT (3)T (3)⊤Q (3)]

i , j

E
[
W (3)T (3)⊤Q (3)]

i , j =
n1n2p

nT
E
[
Q (3)]

i , j −
1p
nT

E
[
(n3 +1)Q (3) + s

(
Q (3) TrQ (3) +Q (3)2)]

i , j

where the last equality comes from T (3)T (3)⊤Q (3) = In3 + sQ (3).

Proof of Equation (6.31) This is again Stein’s lemma (Lemma 2.18) and Proposition 6.20.

E
[

zm⊤T (3)⊤Q (3)]
i , j =βT E

[∥M∥2
Fz z⊤Q (3)]

i , j +
1p
nT

n1n2,n3∑
k,l=1

E
[

zi mkW (3)
l ,k Q(3)

l , j

]
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=βT E
[∥M∥2

Fz z⊤Q (3)]
i , j +

1p
nT

n1n2,n3∑
k,l=1

E

zi mk

∂Q(3)
l , j

∂W (3)
l ,k


=βT E

[∥M∥2
Fz z⊤Q (3)]

i , j

− 1

nT

n1n2,n3∑
k,l=1

E
[

zi mk

(
Q(3)

l ,l

[
T (3)⊤Q (3)]

k, j +Q(3)
l , j

[
T (3)⊤Q (3)]

k,l

)]
E
[

zm⊤T (3)⊤Q (3)]
i , j =βT E

[∥M∥2
Fz z⊤Q (3)]

i , j −
1

nT
E
[

zm⊤T (3)⊤(
Q (3) TrQ (3) +Q (3)2)]

i , j .

Proof of Equation (6.32)

E
[∥M∥2

FQ (3)]= n1,n2∑
u,v=1

E

[(
βM xu yv +

1p
nM

Nu,v

)2

Q (3)
]

=β2
ME

[
Q (3)]+ 1p

nM

n1,n2∑
u,v=1

E

[(
Nu,vp

nM
+2βM xu yv

)
Nu,vQ (3)

]

E
[∥M∥2

FQ (3)]= (
β2

M + n1n2

nM

)
E
[
Q (3)]+ 1p

nM

n1,n2∑
u,v=1

E

[(
Nu,vp

nM
+2βM xu yv

)
∂Q (3)

∂Nu,v

]
where we have used Stein’s lemma (Lemma 2.18) to derive the last equality. Hence, using Proposition
6.20, it becomes

E

[(
∥M∥2

F −
(
β2

M + n1n2

nM

))
Q (3)

]
i , j

=− βT

nM

n1,n2∑
u,v=1

E

[(
Nu,vp

nM
+2βM xu yv

)([
Q (3)z

]
i

[
T (3)⊤Q (3)]

[u,v], j +
[
Q (3)z

]
j

[
T (3)⊤Q (3)]

[u,v],i

)]
=− βT

nM

n1,n2∑
u,v=1

E

[(
2m[u,v] −

Nu,vp
nM

)([
Q (3)z

]
i

[
T (3)⊤Q (3)]

[u,v], j +
[
Q (3)z

]
j

[
T (3)⊤Q (3)]

[u,v],i

)]
= −2

βT

nM
E
[

Q (3)zm⊤T (3)⊤Q (3) + (
Q (3)zm⊤T (3)⊤Q (3))⊤]

i , j

+ βT

nM
p

nM

n1,n2∑
u,v=1

E
[

Nu,v

([
Q (3)z

]
i

[
T (3)⊤Q (3)]

[u,v], j +
[
Q (3)z

]
j

[
T (3)⊤Q (3)]

[u,v],i

)]
and, since βT zm⊤ = T (3) − 1p

nT
W (3) and T (3)T (3)⊤Q (3) = In3 + sQ (3), we have,

βT zm⊤T (3)⊤Q (3) = In3 + sQ (3) − 1p
nT

W (3)T (3)⊤Q (3).

Thus, our expression turns into

E

[(
∥M∥2

F −
(
β2

M + n1n2

nM

))
Q (3)

]
i , j

= − 4

nM
E
[
Q (3) + sQ (3)2]

i , j +
2

nM
p

nT
E
[
Q (3)(W (3)T (3)⊤+T (3)W (3)⊤)

Q (3)]
i , j

+ βT

nM
p

nM

n1,n2∑
u,v=1

E
[

Nu,v

([
Q (3)z

]
i

[
T (3)⊤Q (3)]

[u,v], j +
[
Q (3)z

]
j

[
T (3)⊤Q (3)]

[u,v],i

)]
=− 4

nM
E
[
Q (3) + sQ (3)2]

i , j +
2

nM
p

nT

[
A1 + A⊤

1

]
i , j +

βT

nM
p

nM

[
A2 + A⊤

2

]
i , j

179



Chapter 6. Performance Gaps in Multi-View Clustering under the Nested Matrix-Tensor Model

with

A1 = E
[
Q (3)W (3)T (3)⊤Q (3)], [A2]i , j =

n1,n2∑
u,v=1

E
[

Nu,v
[
Q (3)z

]
i

[
T (3)⊤Q (3)]

[u,v], j

]
.

Let us develop A1 with Stein’s lemma (Lemma 2.18) on W (3).

[A1]i , j =
n3,n1n2,n3∑

a,b,c=1
E

 ∂Q(3)
i ,a

∂W (3)
a,b

T (3)
c,bQ(3)

c, j +Q(3)
i ,a

∂T (3)
c,b

∂W (3)
a,b

Q(3)
c, j +Q(3)

i ,aT (3)
c,b

∂Q(3)
c, j

∂W (3)
a,b


= n1n2p

nT
E
[
Q (3)2]

i , j

− 1p
nT

n3,n1n2,n3∑
a,b,c=1

E
[(

Q(3)
i ,a

[
T (3)⊤Q (3)]

b,a +Q(3)
a,a

[
T (3)⊤Q (3)]

b,i

)
T (3)

c,bQ(3)
c, j

]
− 1p

nT

n3,n1n2,n3∑
a,b,c=1

E
[
Q(3)

i ,aT (3)
c,b

(
Q(3)

c,a

[
T (3)⊤Q (3)]

b, j +Q(3)
a, j

[
T (3)⊤Q (3)]

b,c

)]
= n1n2p

nT
E
[
Q (3)2]

i , j −
1p
nT

E
[(

2Q (3)2 +Q (3) TrQ (3))T (3)T (3)⊤Q (3) +Q (3)2 TrT (3)T (3)⊤Q (3)]
i , j

[A1]i , j =
n1n2p

nT
E
[
Q (3)2]

i , j −
1p
nT

E
[
(n3 +2)Q (3)2 +Q (3) TrQ (3) +2sQ (3)(Q (3)2 +Q (3) TrQ (3))]

i , j

since T (3)T (3)⊤Q (3) = In3 + sQ (3). Next, we develop A2 with Stein’s lemma (Lemma 2.18) on N .

[A2]i , j =
n1,n2∑
u,v=1

n3,n3∑
a,b=1

E

 ∂Q(3)
i ,a

∂Nu,v
zaT (3)

b,[u,v]Q
(3)
b, j +Q(3)

i ,a za

∂T (3)
b,[u,v]

∂Nu,v
Q(3)

b, j +Q(3)
i ,a zaT (3)

b,[u,v]

∂Q(3)
b, j

∂Nu,v


= βT n1n2p

nM
E
[
Q (3)z z⊤Q (3)]

i , j

− βTp
nM

n1,n2∑
u,v=1

n3,n3∑
a,b=1

E
[[

Q (3)z
]

i

[
T (3)⊤Q (3)]

[u,v],a zaT (3)
b,[u,v]Q

(3)
b, j

]
− βTp

nM

n1,n2∑
u,v=1

n3,n3∑
a,b=1

E
[[

Q (3)z
]

a

[
T (3)⊤Q (3)]

[u,v],i zaT (3)
b,[u,v]Q

(3)
b, j

]
− βTp

nM

n1,n2∑
u,v=1

n3,n3∑
a,b=1

E
[
Q(3)

i ,a zaT (3)
b,[u,v]

[
Q (3)z

]
b

[
T (3)⊤Q (3)]

[u,v], j

]
− βTp

nM

n1,n2∑
u,v=1

n3,n3∑
a,b=1

E
[
Q(3)

i ,a zaT (3)
b,[u,v]

[
Q (3)z

]
j

[
T (3)⊤Q (3)]

[u,v],b

]
= βT n1n2p

nM
E
[
Q (3)z z⊤Q (3)]

i , j −
βTp
nM

E
[(

Q (3)z z⊤Q (3) + [
z⊤Q (3)z

]
Q (3))T (3)T (3)⊤Q (3)]

i , j

− βTp
nM

E
[
Q (3)z z⊤(

Q (3)T (3)T (3)⊤Q (3) +Q (3) TrT (3)T (3)⊤Q (3))]
i , j

[A2]i , j =
βT n1n2p

nM
E
[
Q (3)z z⊤Q (3)]

i , j −
βTp
nM

E
[
(n3 +2)Q (3)z z⊤Q (3) + [

z⊤Q (3)z
]
Q (3)]

i , j

− βTp
nM

sE
[
Q (3)z z⊤(

Q (3) TrQ (3) +2Q (3)2)+ [
z⊤Q (3)z

]
Q (3)2]

i , j
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since, again, T (3)T (3)⊤Q (3) = In3 + sQ (3). Eventually, we have

E
[∥M∥2

FQ (3)]= (
β2

M + n1n2

nM

)
E
[
Q (3)]− 4

nM
E
[
Q (3) + sQ (3)2]

+ 4n1n2

nM nT
E
[
Q (3)2]− 4

nM nT
E
[
(n3 +2)Q (3)2 +Q (3) TrQ (3) +2sQ (3)(Q (3)2 +Q (3) TrQ (3))]

+
2β2

T n1n2

n2
M

E
[
Q (3)z z⊤Q (3)]− 2β2

T

n2
M

E
[
(n3 +2)Q (3)z z⊤Q (3) + [

z⊤Q (3)z
]
Q (3)]

−
2β2

T

n2
M

sE
[
Q (3)z z⊤Q (3) TrQ (3) + [

z⊤Q (3)z
]
Q (3)2]

−
2β2

T

n2
M

sE
[
Q (3)z z⊤Q (3)2 +Q (3)2z z⊤Q (3)]

which gives Equation (6.32) after rearranging the terms.

6.C.2 Mean Behavior of the Resolvent

Since Q (3)−1Q (3) = In3 ,

βT zm⊤T (3)⊤Q (3) + 1p
nT

W (3)T (3)⊤Q (3) − sQ (3) = In3

and, from Equation (6.30), we have

βT E
[

zm⊤T (3)⊤Q (3)]+ n1n2

nT
E
[
Q (3)]− 1

nT
E
[
(n3 +1)Q (3) + s

(
Q (3)2 +Q (3) TrQ (3))]− sE

[
Q (3)]= In3 .

Let us rearrange the terms

s
n3

nT
E

[
TrQ (3)

n3
Q (3)

]
+

(
s + n3 −n1n2

nT

)
E
[
Q (3)]+ In3 =βT E

[
zm⊤T (3)⊤Q (3)]− 1

nT
E
[
Q (3) + sQ (3)2]

in order to see that we need to following rescaling to counteract the divergence of the spectrum of
T (3)T (3)⊤,

s̃ = nT s −n1n2p
n1n2n3

, Q̃ (3)(s̃) =
(

nT T (3)T (3)⊤−n1n2In3p
n1n2n3

− s̃In3

)−1

.

Hence, our equation becomes

E
[
m̃n3 (s̃)Q̃ (3)]+ s̃E

[
Q̃ (3)]+ In3 −

βT nTp
n1n2n3

E
[

zm⊤T (3)⊤Q̃ (3)]
=− n3 +1p

n1n2n3
E
[
Q̃ (3)]−(

1p
n1n2n3

s̃ + 1

n3

)
E
[
Q̃ (3)2]− n3p

n1n2n3
s̃E

[
m̃n3 (s̃)Q̃ (3)] (6.35)

where we have introduced m̃n3 (s̃)
def= 1

n3
TrQ (3)(s̃). From Equation (6.31), we have

E
[

zm⊤T (3)⊤Q̃ (3)]+ n3p
n1n2n3

E
[

zm⊤T (3)⊤(
m̃n3 (s̃)Q̃ (3) +Q̃ (3)2)]=βT E

[∥M∥2
Fz z⊤Q̃ (3)]

and, with Equation (6.32),
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E
[

zm⊤T (3)⊤Q̃ (3)]+ n3p
n1n2n3

E
[

zm⊤T (3)⊤(
m̃n3 (s̃)Q̃ (3) +Q̃ (3)2)]

=βT z z⊤
[(

n1n2

nM
+β2

M − 4

nM

)
E
[
Q̃ (3)]+ 4

nM

(
s̃ + n3 +2p

n1n2n3

)
E
[
Q̃ (3)2]− 4

nM

n3p
n1n2n3

E
[
m̃n3 (s̃)Q̃ (3)]

− 8

nM

(
1p

n1n2n3
s̃ + 1

n3

)
E
[
Q̃ (3)3]− 8

nM

(
n3p

n1n2n3
s̃ +1

)
E
[
m̃n3 (s̃)Q̃ (3)2]

−
2β2

T

n2
M

nTp
n1n2n3

E
[
(n3 −n1n2 +2)Q̃ (3)z z⊤Q̃ (3) + [

z⊤Q̃ (3)z
]
Q̃ (3)]

−
2β2

T n3

n2
M

nTp
n1n2n3

(
s̃ + n1n2p

n1n2n3

)
E
[
m̃n3 (s̃)Q (3)z z⊤Q (3)]

−
2β2

T

n2
M

nTp
n1n2n3

(
s̃ + n1n2p

n1n2n3

)
E
[[

z⊤Q (3)z
]
Q (3)2 +Q (3)z z⊤Q (3)2 +Q (3)2z z⊤Q (3)]].

Denoting O
∥·∥
s̃ (vn) a quantity whose spectral norm ∥·∥ is O s̃ (vn), the previous equation can be summa-

rized (after multiplication by βT nTp
n1n2n3

) as

βT nTp
n1n2n3

E
[

zm⊤T (3)⊤Q̃ (3)]+O
∥·∥
s̃ (βT )

=
β2

T nTp
n1n2n3

z z⊤
[(

n1n2

nM
+β2

M

)
E
[
Q̃ (3)]+O

∥·∥
s̃ (n−1

T +β2
T n−1

T )

]
(6.36)

since ∥m∥,∥T (3)∥ =O (
p

nT ) almost surely6 and ∥Q̃ (3)∥ É |ℑs̃|−1. In the non-trivial regime, the quantity
βT nTp
n1n2n3

E[zm⊤T (3)⊤Q̃ (3)] appearing in Equation (6.35) must neither vanish nor diverge ; this is possible

if, and only if,
β2

T nTp
n1n2n3

(
n1n2
nM

+β2
M

)
=Θ(1), i.e., βT =Θ(n−1/4

T ), which is what we assume from now on

and we define theΘ(1) quantity ϱ
def= β2

T nTp
n1n2n3

(
n1n2
nM

+β2
M

)
.

Remark 6.21. In fact, with the assumption βM = Θ(1), we have
β2

T nTp
n1n2n3

(
n1n2
nM

+β2
M

)
= β2

T
nT
nM

√
n1n2

n3
+

Θ(n−1
T ) so we could have kept only the dominant term. However, for finite horizon considerations (as

it is the case in practice), adding the Θ(n−1
T ) term leads to slightly more precise predictions. Indeed,

with the dominant term only, we consider a “worst-case scenario” βM = 0.

6.C.3 Concentration of Bilinear Forms and Traces

Before going further, we must, as usual, show the following almost sure convergences,

a⊤(
Q̃ (3) −E[Q̃ (3)])b

a.s.−−−−−−−−−−→
n1,n2,n3→+∞ 0 and

1

n3
Tr A

(
Q̃ (3) −E[Q̃ (3)]) a.s.−−−−−−−−−−→

n1,n2,n3→+∞ 0

for all bounded (sequences of) vectors a,b ∈Rn3 and matrices A ∈Rn3×n3 .
With the Poincaré-Nash inequality (Lemma 2.19), we find

Var
(
a⊤Q̃ (3)b

)É 4

(
β2

T

nM
+ 1

nT

)
n2

T

n1n2n3
∥a∥2∥b∥2E

[∥∥T (3)∥∥2∥∥Q̃ (3)∥∥4
]
=O s̃ (n−1

T ),

6∥m∥2 = ∥M∥2
F É 2β2

M + 2
nM

∥N∥2
F É 2β2

M + 2
nM

min(n1,n2)∥N∥2 and we already know that 1
nM

∥N∥2 =O (1) almost surely.
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E
[∣∣a⊤(

Q̃ (3) −E[Q̃ (3)])b
∣∣4

]
É 16

(
β2

T

nM
+ 1

nT

)
n2

T

n1n2n3
∥a∥2∥b∥2E

[∣∣a⊤(
Q̃ (3) −E[Q̃ (3)])b

∣∣2∥∥T (3)∥∥2∥∥Q̃ (3)∥∥4
]
+Var

(
a⊤Q̃ (3)b

)2

=O s̃ (n−2
T ),

and Var

(
1

n3
Tr AQ̃ (3)

)
É 4

n2
3

(
β2

T

nM
+ 1

nT

)
n2

T

n1n2n3
∥A∥2E

[∥∥T (3)∥∥2∥∥Q̃ (3)∥∥4
]
=O s̃ (n−3

T ).

Hence, by Lemma 2.20, we have the desired convergences.

6.C.4 Limiting Spectral Distribution and Confinement of the Spectrum

Denote Q̃ (3)
0 the resolvent of nTp

n1n2n3

[
1

nT
W (3)W (3)⊤− n1n2

nT
In3

]
, that is, the model with βT = 0 (no sig-

nal). With the resolvent identity (Proposition 2.21), we have

1

n3
Tr

(
Q̃ (3)

0 −Q̃ (3)
)
= 1

n3

nTp
n1n2n3

Tr

(
Q̃ (3)

0

[
β2

T ∥M∥2
Fz z⊤+ βTp

nT

(
zm⊤W (3)⊤+W (3)mz⊤)]

Q̃ (3)
)

=O s̃ (n−1
T ).

Therefore, the limiting spectral distribution of nTp
n1n2n3

[
T (3)T (3)⊤− n1n2

nT
In3

]
is the same as that of

nTp
n1n2n3

[
1

nT
W (3)W (3)⊤− n1n2

nT
In3

]
. This is good news because we can then invoke the results of Chap-

ter 5 (in particular Corollary 5.2 and Remark 5.4) to state

1. the limiting spectral distribution of nTp
n1n2n3

[
T (3)T (3)⊤− n1n2

nT
In3

]
is the standard semicircle law

µSC,

2. for all ε> 0, maxλ∈Sp 1
nT

W (3)W (3)⊤ Dist
(p

n1n2n3λ−n1n2
nT

,SuppµSC

)
< ε for n1,n2,n3 large enough.

6.D Proof of Theorem 6.7

6.D.1 Isolated Eigenvalue

We seek the asymptotic position ξ̃ of an eigenvalue of nTp
n1n2n3

[
T (3)T (3)⊤− n1n2

nT
In3

]
which is not in the

limiting spectrum of nTp
n1n2n3

[
1

nT
W (3)W (3)⊤− n1n2

nT
In3

]
. It must verify

det

(
nTp

n1n2n3

[
T (3)T (3)⊤− n1n2

nT
In3

]
− ξ̃In3

)
= 0.

Expanding T (3)T (3)⊤ with the decomposition T (3) =βT zm⊤+ 1p
nT

W (3), we can factorize this determi-

nant by det
(

nTp
n1n2n3

[
1

nT
W (3)W (3)⊤− n1n2

nT
In3

]
− ξ̃In3

)
, which is not zero for n1,n2,n3 large enough by

the confinement of the spectrum. Therefore,

det

(
In3 +

nTp
n1n2n3

[
β2

T ∥M∥2
Fz z⊤+ βTp

nT
zm⊤W (3)⊤+ βTp

nT
W (3)mz⊤

]
Q̃ (3)

0 (ξ̃)

)
= 0

where we recall that Q̃ (3)
0 denotes the resolvent of nTp

n1n2n3

[
1

nT
W (3)W (3)⊤− n1n2

nT
In3

]
. Notice that the

sum β2
T ∥M∥2

Fz z⊤ + βTp
nT

zm⊤W (3)⊤ + βTp
nT

W (3)mz⊤ can be written as the following matrix product,
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[
βT ∥M∥Fz βT ∥M∥Fz 1

∥M∥F
p

nT
W (3)m

][ βT ∥M∥Fz⊤
1

∥M∥F
p

nT
m⊤W (3)⊤

βT ∥M∥Fz⊤

]
. Hence, with Sylvester’s identity (Proposition 2.22),

we have

det

I3 +
nTp

n1n2n3


β2

T ∥M∥2
Fz⊤Q̃(3)

0 (ξ̃)z β2
T ∥M∥2

Fz⊤Q̃(3)
0 (ξ̃)z

βTp
nT

z⊤Q̃(3)
0 (ξ̃)W (3)m

βTp
nT

m⊤W (3)⊤Q̃(3)
0 (ξ̃)z

βTp
nT

m⊤W (3)⊤Q̃(3)
0 (ξ̃)z 1

nT ∥M∥2
F

m⊤W (3)⊤Q̃(3)
0 (ξ̃)W (3)m

β2
T ∥M∥2

Fz⊤Q̃(3)
0 (ξ̃)z β2

T ∥M∥2
Fz⊤Q̃(3)

0 (ξ̃)z
βTp
nT

z⊤Q̃(3)
0 (ξ̃)W (3)m


= 0.

From the convergence of bilinear forms proven in Section 5.B.1, z⊤Q̃ (3)
0 (ξ̃)z → mSC(ξ̃) almost surely.

Moreover, Lemma 6.22 below justifies that entries (1,1), (1,2), (3,1) and (3,2) converge almost surely
to ϱmSC(ξ̃) (recall that βT =Θ(n−1/4

T ) in the non-trivial regime).

Lemma 6.22.
β2

T nTp
n1n2n3

∥M∥2
F → ϱ almost surely as n1,n2,n3 →+∞.

Proof. We have ∥M∥2
F =β2

M +∑n1
i=1

∑n2
j=2

(
2 βMp

nM
xi y j Ni , j + 1

nM
N 2

i , j

)
where Ni , j

i.i.d.∼ N (0,1) therefore

E

[
β2

T nTp
n1n2n3

∥M∥2
F

]
=

β2
T nTp

n1n2n3

(
β2

M + n1n2

nM

)
= ϱ,

Var

(
β2

T nTp
n1n2n3

∥M∥2
F

)
=

(
β2

T nTp
n1n2n3

)2[
4
β2

M

nM
+2

n1n2

n2
M

]
=O (n−2

T ).

Thus, Lemma 2.20 gives the stated result.

Then, the next lemma shows that entries (1,3), (2,1), (2,2) and (3,3) are O (n−1/4
T ) while entry (2,3)

is O (n−1/2
T ) almost surely, i.e., they all vanish asymptotically.

Lemma 6.23. ∥W (3)m∥ =O (nT ) almost surely as n1,n2,n3 →+∞.

Proof. ∥W (3)m∥2 = m⊤W (3)⊤W (3)m = m⊤V DV ⊤m where D is an n3 ×n3 diagonal matrix of (non-
zero) eigenvalues of W (3)⊤W (3) (we assume nT sufficiently large so that n1n2 > n3) and V is uniformly

distributed on the Stiefel manifold Vn3 (Rn1n2 ) (Chikuse, 2003, Theorem 2.2.1). Hence, ∥W (3)m∥2

nT ∥m∥2 É
n1n2+2

p
n1n2n3

nT

m⊤
∥m∥V V ⊤ m

∥m∥ . Although m
∥m∥ is random, it is independent of W (3) and therefore V . Thus,

given m
∥m∥ , we can choose O ∈ On1n2 (R) such that O m

∥m∥ = e(n1n2)
1 . The orthogonal matrix O is random

but independent of V as well so m⊤
∥m∥V V ⊤ m

∥m∥ = e(n1n2)⊤
1 OV V ⊤O⊤e(n1n2)

1 is identically distributed to

e(n1n2)⊤
1 V V ⊤e(n1n2)

1 (Chikuse, 2003, Theorem 2.2.1). According to Mardia and Khatri (1977), [V V ⊤]1,1

follows a beta distribution with parameters n3
2 , n1n2−n3

2 so its moments are given by E[[V V ⊤]k
1,1] =∏k−1

r=0
n3+2r

n1n2+2r for all k Ê 1. This is enough to see that
n1n2+2

p
n1n2n3

nT
E[[V V ⊤]1,1] = n1n2+2

p
n1n2n3

nT

n3
n1n2

=
O (1) and

(
n1n2+2

p
n1n2n3

nT

)4
E[|[V V ⊤]1,1−E[[V V ⊤]1,1]|4] =O (n−2

T ). Therefore, ∥W (3)m∥2

nT ∥m∥2 is upper bounded

by a quantity which is O (1) almost surely. Since ∥m∥2 = ∥M∥2
F = O (nT ) almost surely, this shows that

1
n2

T
∥W (3)m∥2 =O (1) almost surely.

Eventually, since the determinant is a continuous function in the entries of the matrix, we have
asymptotically

det

1+ϱmSC(ξ̃) ϱmSC(ξ̃) 0
0 1 0

ϱmSC(ξ̃) ϱmSC(ξ̃) 1

= 0
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which simply gives 1+ϱmSC(ξ̃) = 0 or mSC(ξ̃) = −1
ϱ . Hence, from the relation m2

SC(ξ̃)+ ξ̃mSC(ξ̃)+1 = 0,
we find

ξ̃= ϱ+ 1

ϱ
.

6.D.2 Deterministic Equivalent

In order to evaluate the alignment 〈z , ẑ〉 below, we compute a deterministic equivalent (Definition
2.17) of the resolvent Q̃ (3). From Equations (6.35) and (6.36), we have∥∥E[m̃n3 (s̃)Q̃ (3)]+ s̃E

[
Q̃ (3)]+ In3 −ϱz z⊤E

[
Q̃ (3)]∥∥−−−−−−−−−−→

n1,n2,n3→+∞ 0.

Moreover, m̃n3 (s̃) → mSC(s̃) almost surely and mSC(s̃)+ s̃ = −1
m̃(s̃) therefore∥∥∥∥In3 −

(
ϱz z⊤+ 1

mSC(s̃)
In3

)
E
[
Q̃ (3)]∥∥∥∥−−−−−−−−−−→

n1,n2,n3→+∞ 0

and we can define the following deterministic equivalent

Q̄ (3)(s̃) =
(
ϱz z⊤+ 1

mSC(s̃)
In3

)−1

.

6.D.3 Eigenvector Alignment

Following Cauchy’s integral formula,

〈z , ẑ〉2 =− 1

2iπ

∮
γ̃

z⊤Q̃ (3)(s̃)z ds̃

where γ̃ is a positively-oriented simple closed complex contour circling around the isolated eigenvalue
only. Hence, using the previously found deterministic equivalent Q̄ (3), we can compute the asymptotic
value ζ of 〈z , ẑ〉2,

ζ=− 1

2iπ

∮
γ̃

z⊤Q̄ (3)(s̃)z ds̃.

This reduces to residue calculus (Proposition 2.16),

ζ=− lim
s̃→ξ̃

(
s̃ − ξ̃)[ϱ+ 1

mSC(s̃)

]−1

= −1
d

ds̃

[
ϱ+ 1

mSC(s̃)

]
s̃=ξ̃

=
m2

SC(ξ̃)

m′
SC(ξ̃)

.

Recall that mSC(ξ̃) = −1
ϱ . Differentiating m2

SC(s̃)+ s̃mSC(s̃)+1 = 0, we have,

2m′
SC(ξ̃)mSC(ξ̃)+mSC(ξ̃)+ ξ̃m′

SC(ξ̃) = 0 ⇐⇒ m′
SC(ξ̃) =− mSC(ξ̃)

2mSC + ξ̃
⇐⇒ m′

SC(ξ̃) = 1

ϱξ̃−2

⇐⇒ m′
SC(ξ̃) = 1

ϱ2 −1
.

Hence, we conclude,

ζ= 1− 1

ϱ2 .
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Chapter 7

Conclusion and Perspectives

STATISTICAL learning has experienced tremendous development over the past decades and is now
more commonly referred to as machine learning to emphasize the central role of computers in

this field of study. Relying on the computing and storage power granted by the spectacular technolog-
ical advances of the early 21st century, enormous efforts are put into digging up a new invisible and
intangible gold: information. Yet, with great power comes great responsibility. Besides the human and
environmental impact linked with the production of new technologies, the massive development of
artificial intelligence transforms the structure of our societies worldwide and comes with a multitude
of ethical and technical questions. The research community is at the forefront in proposing solutions
to overcome this turmoil.

This thesis is concerned with the technical aspect of the picture, as it provides new insights into a
resource-efficient processing of large-dimensional data. In order to avoid using unnecessary amounts
of resources in learning tasks, a thorough understanding of the statistical mechanisms at stake is re-
quired. Overall, we promote a paradigm shift towards a prudent use of computing resources based on
solid theoretical results yielding the optimal setting for a given desired level of performance.

Initially motivated by the growing dimension of the data (p) relatively to the number of samples
(n), such that p is now of the same order as n, the use of random matrix theory proves to be useful not
only for large-dimensional but also multidimensional data. However, the increased level of complexity
captured by the processing of large and multidimensional arrays (tensors) instead of matrices comes
with a cost: a computational-to-statistical gap. Henceforth, the existence of an informative solution
to a statistical estimation problem no longer implies that such a solution can actually be computed,
not because of a lack of efficient methods suggesting that further research is needed, but because of a
computational barrier due to the complexity of the problem. Thus, we distinguish three phases: im-
possible, hard and easy. If the statistical barrier coincides with the computational one, then the hard
phase does not exist and an informative solution can be computed with a polynomial-time algorithm
as soon as it exists. Otherwise, in the hard phase, computing the solution is not practically doable as
it would require an exponential amount of resources.

Each matrix or tensor model considered in this thesis falls under the denomination of a signal-
plus-noise model: the data is assumed to be the addition of a signal — which we wish to reconstruct —
and a noise. A natural sparsity assumption is that the information sought decomposes into a few sim-
ple algebraic terms. Hence, in the large-dimensional regime, while the energy of the noise is diluted
in every direction, the energy of the signal spikes in a finite number of directions and can therefore
be reconstructed via a spectral decomposition of the observation. This simple yet powerful idea, cou-
pled with the well-established tools of random matrix theory, allows us to characterize the achievable
reconstruction performance depending on the strength of the signal.
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Resource-Efficient Learning

Among the methods limiting the use of memory resources in machine learning, online learning con-
sists in extracting information from a continuous data stream. It is particularly useful when trying to
learn from a large dataset under low-memory constraints: instead of loading every data point, they
can be viewed one by one and the learning task is performed on the thus generated data stream. In
Chapter 4, we have rigorously shown that, with an astute usage of the available memory, an online ver-
sion of kernel spectral clustering outperforms the usual batch clustering. It relies on a banded version
of the kernel matrix KL = 1

p X ⊤X ⊙T which can be computed in an online fashion. Our random matrix
results describe under which setting clustering is possible (i.e., for which values of signal-to-noise ra-
tio and available memory, see Figure 4.6) by exhibiting the phase transition between impossible and
possible recovery. Moreover, they provide theoretical performance guarantees which allow to decide
the best trade-off between performance and memory usage depending on the application.

Nevertheless, this problem still presents many challenges. Although the two-class setting is now
well understood, solutions for the multi-class setting remain too heuristic and still lack a precise char-
acterization because of the intricate behavior of the eigenvectors used for the estimation. In order to
counteract this phenomenon, a clever choice of weights applied to the entries of the banded kernel
matrix could make the unmixing easier to perform. Moreover, optimality results on standard spectral
clustering (Onatski et al., 2013; Löffler et al., 2021) suggest that the proposed approach is optimal (in
the sense that it achieves non-trivial estimation as soon as theoretically possible). Proving this opti-
mality (e.g., with similar tools as Nguyen and Couillet (2023)) would further strengthen our results.

In the broader context of resource-efficient learning, another pertinent approach, which is not
limited to clustering, is the computation on the fly of a summary of the dataset on which the learn-
ing task in then performed. This method, known as sketching (Gribonval et al., 2021) is useful for
learning on data streams but is also relevant in contexts of federated learning and privacy-preserving
learning. It relies on the simple idea that, instead of the data matrix X ∈ Rp×n , the learning task
can be performed on a “sketch” of the data z = 1

n

∑n
i=1φ(xi ) ∈ Cm with a well-chosen transformation

φ : Rp → Cm . In particular, a common choice is φ(x) = f (W x) where W ∈ Rm×p is a matrix of ran-
dom frequencies (e.g., with i.i.d. N (0,σ2) entries) and f is applied pointwise. Then, the sketch can be
written as z = 1

n f (W X )1n , which shows that the information in the m ×n matrix f (W X ) is projected
on the direction 1n . Thus, the random matrix analysis of f (W X ) can disclose the performance of
this method and suggest the best trade-off between the size of the sketch (m) and the desired perfor-
mance. A similar model is studied in a supervised learning framework (single-layer neural networks)
by Louart et al. (2018) who combine random matrix theory and concentration of measure tools (Tala-
grand, 1995; Ledoux, 2001; Louart and Couillet, 2021). Moreover, if X = P +N is a spiked model, then
f (W X ) = f (W P+W N ) is a non-linear spiked model and its random matrix analysis can be performed
via a signal-plus-noise decomposition (Moniri and Hassani, 2024).

In essence, resource-efficient learning is about using wisely the bare minimum of resources to
achieve a task. Be it with spectral clustering, sketching or any other method, random matrix theory
remains an essential tool to disclose the relevant parameters and provide performance guarantees,
thereby allowing an informed use of the available resources.

Algorithmic Tensor Estimation

Because of their multidimensional structure, tensors are particularly memory-demanding, but they
can also capture richer information. Efficiently extracting the latter from a signal-plus-noise tensor
model is therefore a crucial task. In practice, the low-rank tensor approximation problem is hindered
by a computational barrier: there exists a hard phase delimited from the easy phase by a computational

threshold diverging as N
d−2

4 (in terms of signal-to-noise ratio). Hence, it is necessary to study the re-
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construction performance of standard low-rank tensor approximation algorithms in order to identify
where they stand relatively to this threshold. In particular, the celebrated AMP algorithm achieving
outstanding performances on a number of statistical learning tasks (see Feng et al. (2022) and refer-
ences therein) does not succeed at low-rank tensor approximation unless the signal-to-noise ratio is

greater than aΘ(N
d−1

2 ) threshold (Lesieur et al., 2017).
By studying the properties of “long” random matrices — with a number of columns growing poly-

nomially (N d−1) in the number of rows (N ) — stemming from the unfoldings of a tensor following the
general spiked tensor modelT =P+ 1p

N
N, we have characterized in Chapter 5 the reconstruction per-

formance of the truncated multilinear singular value decomposition (MLSVD) as a low-multilinear-
rank approximation technique. This study reveals the existence of a phase transition in each principal
direction of each mode of the signal. That is, a singular value sqℓ (P (ℓ)) of the unfolding of P along

the ℓ-th mode must be greater than a quantity
p
σN =Θ(N

d−2
4 ) for the corresponding singular vector

to be detected in the MLSVD of T. However, it is known that the truncated MLSVD does not yield the
best low-multilinear-rank approximation for tensors of order d Ê 3 (the Eckart-Young-Mirsky theorem
does not generalize to tensors of order greater than 2) but it can serve as a good initialization to the
higher-order orthogonal iteration (HOOI) which computes a solution to the best low-multilinear-rank
approximation problem. Our Theorem 5.11 shows that, as soon as the initialization of this algorithm
recovers a sufficient amount of energy from the sought signal (see the formal statement in Theorem
5.11), then its convergence is guaranteed in a single iteration as N →+∞. With a truncated MLSVD
initialization, this condition is satisfied above a threshold behaving like

p
σN . In other words, we have

shown two major points.

1. The truncated MLSVD — a very cheap but suboptimal low-multilinear-rank approximation
technique — detects the principal directions of a signal as soon as the corresponding singular

values (their strength) is above aΘ(N
d−2

4 ) threshold.

2. The convergence of HOOI depends solely on the quality of its initialization.

Hence, without prior information, the truncated MLSVD is the best possible initialization and allows
the convergence of HOOI near the computational threshold. Our analysis therefore provides insight
into the computational barrier: the exact characterization of the reconstruction performance of the
truncated MLSVD describes the minimal amount of signal needed to initialize the HOOI in the right
bassin of attraction.

This “unfolding approach” also proves useful in Chapter 6 where it is applied to an order-3 tensor
following a nested matrix-tensor model representing a multi-view clustering setting. The model can
be seen as an extension of the rank-one spiked tensor model with a matrix noise and a tensor noise.
This allows to perform a theoretical analysis of the performance of multi-view clustering depending
on a matrix signal-to-noise ratio βM representing the “inner difficulty” of the problem and a tensor
signal-to-noise ratio βT representing the difficulty due to the fact that we can only see the problem
through multiple views. Our results lead to a phase diagram (Figure 6.2) showing under which settings
the reconstruction of the rank-one signal from the multiple views is possible. In particular, because of
the computational barrier, βT must scale as n1/4

T (nT controls the size of the tensor), which is reminis-

cent of the Θ(N
d−2

4 ) computational threshold (with N = nT and d = 3). Comparing our results with a
previous work of Seddik et al. (2023a) on the statistical limits to this problem, we are able to precisely
quantify and display the computational-to-statistical gap. Notably, this gap is all the larger given that
the views are less informative.

Further work is needed to comprehensively characterize the reconstruction performance of multi-
view clustering. Our results provide new theoretical guarantees, but are not yet fully satisfying for the
practical user, because the nature of the transformations that generate each view is usually complex
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and therefore cannot be fully captured by our yet too simplistic model. A interesting direction for fu-
ture research is thus to study the non-linear spiked tensor model induced by Equation (6.1) with more
general view functions fk . Such an analysis would provide valuable insight to any scientist faced with
a multi-view clustering problem. Moreover, it could come with enlightening results on the influence
of the non-linearities on the computational barrier.

A myriad of questions concerning the computational limits to tensor estimation still remain open.
A noteworthy problem is the computation of the best (CP-)rank-R approximation. Although we argue
that this is problem is encompassed by our analysis in Chapter 5 because of the equivalence between
low CP-rank and low multilinear rank, the way it is practically solved raises interesting questions. In-
deed, computing the best rank-R approximation of a very large tensor is costly and an indirect and
less-memory-demanding method is usually preferred (Bro and Andersson, 1998). Given a large tensor
T it is cheaper to first compute a “compressed version” with a truncated MLSVD (of sufficiently high
multilinear rank) �G;U (1), . . . ,U (d)� ≈ T and then compute a best rank-R approximation of the core
tensor G ≈ ∑R

r=1λr
⊗d

ℓ=1 x (ℓ)
r which is of smaller dimension and from which a rank-R approximation

of T can be deduced: T ≈∑R
r=1λr

⊗d
ℓ=1[U (ℓ)x (ℓ)

r ]. We have characterized the first step of this method
(computing the truncated MLSVD) in Chapter 5. Therefore, it is worth studying the decomposition
of the core tensor in order to complete a global analysis of this approach. An instructive result would
help choosing a “good” multilinear-rank for the first step — it should not be too small, otherwise we
loose information, but not too large either, otherwise the computation remains costly.

Despite their highly resource-intensive nature, tensors allow a richer data representation. Hence,
a rigorous analysis of tensor estimation algorithms is necessary to promote relevant and efficient ap-
proaches within the limits imposed by the computational barrier.

Statistical Limits to Tensor Estimation

Although the statistical threshold cannot be reached in practice because of the computational-to-
statistical gap, studying the statistical limits to a tensor estimation problem remains a relevant ob-
jective. Indeed, this allows to characterize the best achievable performances, even in the easy phase
which, in practice, is not infinitely far from the statistical threshold as N is finite. To illustrate this
point, consider the low-multilinear-rank approximation problem. We have shown in Chapter 5 that,
when properly initialized, HOOI converges to an optimum of the likelihood in the easy phase. As
N →+∞, this easy phase is infinitely far from the statistical threshold, hence the perfect alignment of
the resulting solution stated in Theorem 5.11. But, in practice, N is finite and the computed solution is
not perfectly aligned with the signal as illustrated in Figure 5.2. Therefore, characterizing these align-
ments at finite (but large) N requires to study the statistical limits to the estimation near the statistical
threshold as N →+∞, though paradoxical it may sound.

However, studying the maximum likelihood estimator is delicate and this is more commonly per-
formed with tools from statistical physics not considered in this thesis (Lesieur et al., 2017; Kadmon
and Ganguli, 2018; Ben Arous et al., 2019; Jagannath et al., 2020). Still, recent works of Goulart et al.
(2022) and Seddik et al. (2022) have shown how random matrix theory can be a powerful tool to study
this problem as well. A solution to minX∈M ∥T −X∥2

F where M is a (closed) set of low-rank tensors
can be associated to a random matrix model Φ (see Section 1.2.3) whose spectral properties allow us
to infer features of the solution — in particular, its alignment with a sought signal planted in T.

A promising line of investigation is to apply the approach developed in Seddik et al. (2022) to mod-
els of interest in statistical learning. Processing large amounts of multimodal data is a common chal-
lenge of the big data era. Tensors as multi-way arrays have inherently a high volume, scaling expo-
nentially with the number of modes, which can rapidly reach a memory limit. Often, the information
sought in such gigantic raw data is a latent and low-dimensional structure. Hence, some techniques
have been developed to compute decompositions (e.g., CPD or MLSVD, see Section 2.4.2) from in-
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complete tensors (Vervliet et al., 2014). At first, they were used to tackle the issue of missing values,
which is common in chemometrics data (Tomasi and Bro, 2005; Acar et al., 2011). Nowadays, they
can be used to compute tensor decompositions on intentionally punctured data. That is, in order to
reduce the volume of a tensor, only a portion of it is actually stored and inference is performed on its
incomplete version.

A simple yet effective procedure to reduce the volume of a huge tensor T is therefore to store a
portion ε ∈ [0,1] of its entries chosen at random. Concretely, this is modeled by the entrywise mul-
tiplication T ⊙B where B has i.i.d. B(ε) entries (i.e., 1 with probability ε and 0 otherwise). Under
the standard rank-one spiked tensor model T = β

⊗d
ℓ=1 x (ℓ) + 1p

N
N, we can infer the reconstruction

performance of a rank-one approximation of T⊙B from the results of Seddik et al. (2022) as per the
universality result for random tensors of Gurau (2014). This shows that the impact of this punctur-
ing policy on the reconstruction performance is a scaling by 1/

p
ε of the signal-to-noise ratio (SNR).

That is, the statistical threshold is multiplied by 1/
p
ε and the alignments of the estimate with the sig-

nal observed at an SNR β without puncturing are found at an SNR β/
p
ε with puncturing. Random

puncturing can therefore rapidly become limiting if we are faced with drastic memory constraints.
Nevertheless, demonstrating these results directly proves delicate because of mixing terms with the
mask B whose mean behavior is intuitively well understood but practically tricky to untangle. As of
now, our toolbox is manifestly not rich enough to tackle these seemingly simple questions on random
tensors.

In case of strong memory limitations, more clever data-dependent puncturing approaches must
be considered. In particular, similar procedures as those studied by Liao et al. (2021) on matrices could
be applied to tensor data as well: sparsification keeps only the entries whose absolute value is above a
fixed threshold while quantization replace every entry by their closest predefined “quantum” (hence
only a small number of values, the quanta, are stored) and, in some applications, even binarization
(keeping only the sign of the entries) may be relevant. As such data-dependent puncturing is expected
to achieve a better performance versus cost trade-off, studying these procedures trough the associated
random matrix modelΦwould provide valuable results to reduce the memory footprint of tensors but
also further support this technique to study random tensor models.

Moreover, this approach is currently limited to the rank-one case and further work is needed to
study the statistical limits to the best low-multilinear-rank approximation of the more general spiked
tensor model T =P+ 1p

N
N presented in Chapter 5. In particular, this is needed to access the theoreti-

cal curves behind the performance of HOOI presented in Figure 5.2. Heading in this direction requires
the definition of a generalized random matrix model Φ on which we could deploy the powerful ran-
dom matrix machinery.

A long way is still to be run in order to comprehensively characterize the statistical limits to ten-
sor estimation. Despite the complexity of the problem, many questions remain unanswered, thereby
providing a flourishing source of exciting challenges. These theoretical considerations pave the way
towards new tools for the study of large random tensors, allowing a more clever and prudent approach
to intricate estimation problems.
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